Models to predict the impact of the climate changes on aquifer recharge.

MANUEL MENDES OLIVEIRA¹, MARIA EMÍLIA NOVO², JOÃO PAULO LOBO FERREIRA³

¹,³ Laboratório Nacional de Engenharia Civil (LNEC), Hydraulics and Environment Department (DHA), Groundwater Division (NAS), Av. do Brasil, 101, 1700-066 Lisboa, Portugal
¹ Tel: +351 21 844 3436, moliveira@lnec.pt, ³ Tel: +351 21 844 3609, lferreira@lnec.pt
² Parque Natural do Douro Internacional, Largo do Outeiro, n.º 6, 5810-118 Freixo de Espada à Cinta, Portugal
Tel: +351 279 340 030, oisinhelios@yahoo.com

Abstract Climate change is a statistically significant alteration of the climate variables in terms of their distribution both on time and in space. These changes will have a direct impact on the hydrologic system and an indirect impact on the quality of the surface and ground water resources. This paper deals with the impact of climate changes on groundwater recharge. Several models to estimate recharge are presented, among which the daily sequential water balance model reveals to be the most appropriate to attain this goal. Climate changes may be predicted using climate models. Average precipitation and temperature values are outputs of these models. For a case study area of north Portugal, theoretical forecasted precipitation and reference evapotranspiration series are used to study the impact of precipitation change in groundwater recharge. For a scenario of 70 % of actual precipitation, recharge would lower to 45 % of the estimated actual recharge.

Key Words Climate change, Portugal, recharge, recharge assessment, water balance models

INTRODUCTION

Climate change is a statistically significant alteration of the climate variables in terms of their distribution both in time (amount and intensity) and in space, as well as in their intrinsic variability in a significantly broad framework of time.

Climate change affects the water cycle primarily through changes in the precipitation and temperature. These changes will have a direct impact in terms of surface runoff, evapotranspiration (ET), infiltration, recharge, and an indirect impact on the quality of the surface and ground water resources. At a secondary level, changes in the vegetation cover due to climate change also impact the water cycle. Changes in temperature regimes affect ET and consequently water depletion from the soil, water losses from lakes and other surface water reservoirs. Changes in patterns, frequencies and intensities of precipitation affect runoff, infiltration, average soil moisture contents and recharge. Climate change can also affect
groundwater quality; in the southern areas, more prone to extended spells of drought, soil salinization due to processes associated to ET and capillary rise of water can pose a threat to groundwater quality. Changes in temperature might also affect the chemical and biological equilibrium in the vadose zone, affecting water quality. Even more significant is the impact of flash floods (generated by extreme events of precipitation) on groundwater pollution, once these phenomena usually discharge a significant amount of contaminants into the soils, surface water bodies and aquifers. On coastal aquifers, sea level rises due to climate change promote an advance of the sea water/freshwater interface so promoting saline intrusion and the loss of coastal aquifers areas.

However, one of the major impacts of climate change, due to the combined effect of change in the temperature and precipitation regimes, is on **aquifer recharge**. This is the subject of this paper.

**METHODS TO PREDICT GROUNDWATER RECHARGE**

**General**

The choice of a model or method to compute recharge derives from the conceptualization of the recharge process of a study area. This conceptualization is based on the physical system, its geometry, all the inputs and outputs of water and its locations. The computation of recharge is based on mass balances between water coming in, going out or being stored in the water system. These mass balances are generally water-mass balances but can also be any substance-mass balance diluted in water. Models to compute recharge may be grouped into mass balances above saturated zone and mass balances in the saturated zone. Only the water mass balances are considered in this paper.
Water mass balances above the saturated zone

These are predictive models as they quantify recharge by computing the processes prior to recharge occurrence (precipitation, infiltration, water stored in the surface and in the vadose zone). The soil daily sequential water balance is an appropriate method to estimate deep percolation and hence recharge. This method requires knowledge of the climatic data to characterize precipitation and reference ET, and knowledge of medium characteristic parameters, that depend on the complexity of the selected model. These models allow for estimation of distributed recharge in a region, produce results by recharge episode and may be applied to any geological medium (intergranular, fissured, karstic or more than one type). However, the more general application is for intergranular, as the soil storage is more easily quantified, and preferential pathways are less important.

Water mass balances in the saturated zone

These are response models as they represent the reaction of the groundwater medium to the recharge process. Several methods are available depending on the hydrogeological setting, for instance: (a) surface flow hydrograph separation, (b) spring discharge quantification, (c) flow quantification in aquifer sections, (d) saturated zone storage change (water level change), (e) combination of these methods, also including human water abstractions. These methods are integrative for a region and may compute recharge by episode.

Surface flow hydrograph separation method In this method base flow and direct runoff are separated. Base flow is an estimate of recharge that occurs in the area defined by a watershed when all groundwater flow inside the watershed discharges to the surface water streams inside that watershed (i.e. there is a coincidence between the watershed and the hydrogeological basin). The hydrogeological settings more favorable to observe this requisite are local systems
of metamorphic and igneous rocks, with intergranular or fissured porosity. In some cases of sedimentary rocks with intergranular porosity, even if stratified, this requisit may still be found. The surface flow hydrograph separation method is probably the easiest recharge calculation method to use, as it does not require medium characteristic parameters, and only requires knowledge of daily precipitation and flow series.

**Spring discharge method** The spring discharge is an estimate of recharge. This method requires the knowledge of the area drained by the spring, which is not an easy value to obtain. Due to the structure of the groundwater flow paths and its significant water volumes this method is mainly applicable for karstic hydrogeological settings. For the other hydrogeological media, despite the possible occurrence of large flow springs, it is likely that it exists diffuse discharge in important amounts which difficult the quantification of discharge.

**Flow quantification in aquifer sections** This method is applicable to any hydrogeological medium requiring the knowledge of the recharge area upgradient the measuring section, the constant monitoring of the piezometric level in both sides of the section and the aquifer transmissivity along the measuring section. These requirements turn the application of the method more difficult.

**Water level change** This change is a direct consequence of recharge. Time for the application of this method is very short. For the application of this method it is required that in a study volume, the difference between groundwater flow entering and leaving the system is negligible in relation to the water level rise. This method also requires the characterization of effective porosity in the depth of water level oscillation.
Models to predict the impact of the climate change on aquifer recharge

Among the presented methods for aquifer recharge estimation, the soil daily sequential water balance models are the only models with prediction characteristics. This feature allows estimating distributed recharge and allows forecasting the impact of climate changes on aquifer recharge. To use these models with this purpose, it is necessary to forecast precipitation and reference ET series (in a daily basis, because the time step is daily). Also, if the climate change leads to a land cover change, the infiltration/direct runoff properties of the ground surface may change and these may be incorporated on the model.

The methodology developed to separate surface flow into direct runoff and base flow could also be used to estimate the impact of climate change on groundwater recharge provided daily surface flow series (besides daily precipitation series) could be forecasted. However, as mentioned before, this methodology is a response one instead of a predictive one. This incongruence between the surface flow forecast purpose and the recharge assessment response methodology is due to the fact that surface flow is the result of base flow (besides direct runoff) and not the opposite, which means that to produce surface flow series base flow series should have been estimated previously.

In another way, to some extent it seems reasonable to use the results of the response methods, when there are recharge estimates for long time series. For instance, if some law has been established between recharge and precipitation and if it is forecasted in the future a reduction of precipitation to 80 % of the actual precipitation, one may look in the recharge estimates that corresponded in that series to the value of 80 % of precipitation. This approach would imply that the same precipitation distribution and ET conditions would exist in the future with the only difference being the amount of precipitation.

From the presented discussion it comes that the most adequate approach to estimate groundwater recharge for different climatic conditions is the soil daily sequential water balance models.
balance (DSWB). The main challenge is to forecast series of daily precipitation and daily reference ET.

CLIMATE CHANGE SCENARIOS AND IMPACTS ON AQUIFERS
To access climate change impacts, especially on the water cycle, reliable climate models are required. It is also necessary to have projections of socio-economic developments and responses to climate change, in order to define anthropogenic emissions of greenhouse gases and aerosols. These anthropogenic emissions (coupled with any natural climate change trends) are usually referred as emission’s scenarios. The values ascribed to these emission scenarios are part of the inputs to the climate models, that then proceed to model the possible climate changes associated with each socio-economical evolution (or emission’s scenarios). The outputs from the climate models are precipitation and temperature average values for a certain area after a certain amount of time (usually predictions for 2070 or 2100), amongst other parameters.

According to SIAM (2001), climate change scenarios developed for Portugal predict an average temperature increase between 4 °C in Winter and 9 °C in Summer and a general decrease in precipitation of 10-20% average. However this precipitation decrease is not uniform along the year, being predicted a decrease of up to 30% in Spring, and between 35 to 60% in Autumn, against an increase of 20-50% in Winter (SIAM, 2001), pointing towards an evolution of increased concentrated precipitation events and longer drought spells. The changes are not uniform either across the Portuguese territory; the sharpest decreases in precipitation are predicted for the southern areas (Alentejo and Algarve), while small areas in northern Portugal might show a small increase in precipitation. Temperature increase affects ET and, according to Novo (2003), for temperature increases between 2 and 12 °C (the extremes of temperature increase for Portugal, according to SIAM, 2002), and using as a rough estimation the Turc formula with an average precipitation of 1 000 mm/year, ET can
increase from 11% to 61%. As far as aquifers are concerned, these changes affect recharge and the amount of water extracted from soil and aquifers through ET.

As far as small aquifers are concerned these changes might mean that they might not benefit from the increase in Winter precipitations due to their small storage capacity; the same might not be true for large aquifers once their storage capacity is large enough to accommodate the possible extra recharge due to the concentrated precipitation in Winter, if runoff does not take over (SIAM, 2002). So, for aquifer recharge not only temperature and precipitation changes are important but size might also play a role on water replenishment. The increase in ET also increases the soil salinization and salt leaching to the aquifers (through infiltration across the saline accumulations, generated during the high ET periods).

To study the impacts of these changes on groundwater, precipitation and temperature values (or the ET calculated from these temperatures) must be input into recharge models. Climate models don't provide daily data, so while models to generate daily data series are not widely available, a possible approach to generate these series is to pick up actual daily (precipitation, temperature, etc.) series and rearrange them in accordance with the average trends of change given as output by the climate models for each of the emission’s scenarios considered (cf. Novo, 2002).

**APPLICATION TO A PORTUGUESE CASE STUDY AREA**

In this section the applicability of the soil DSWB model is demonstrated. This approach was carried out for Azores islands by Novo (2003, 2004), where recharge variation was estimated as a function of the scenarios of precipitation change. Considering average annual precipitation values of about 2000 mm/year, Novo (2003) found average recharge changes from -3,7% (for -0.3 mm/day precipitation scenario) up to -30,8% (for a scenario with an average precipitation reduction of 25%).
To test the suggested approach, BALSEQ model was used (Lobo Ferreira, 1981; Lobo Ferreira & Delgado Rodrigues, 1988). Besides daily precipitation and monthly potential ET, this model requires the initial soil moisture content (hi) and two parameters, the runoff curve number (NC) and the maximum amount of water available for ET (AGUT).

This study used average series of daily precipitation and potential ET calculated for the watershed above the stream gauge station of Ponte Velha Capitão, located in a contributor stream at the right bank of the Douro river, near Alfândega da Fé village. The period studied stretched from 1982/10/01 to 1990/09/30. Taking as a starting point the series of precipitation calculated for that period (source precipitation series - SPS), the following precipitation changing scenarios were used: 90 % of SPS, 80 % of SPS, and 70 % of SPS. The series were calculated in two forms: (a) applying the percentage factor to the SPS, or (b) considering a cutoff value for daily precipitation so that the sum of daily precipitation values larger than that cutoff value would result in the required percentage of SPS. The first form consists in just diminishing the daily amount of precipitation, while the second form consists in assuming that climatic changes always produce more intensive precipitation episodes, so that the lower daily values were discarded and only the higher (more intense precipitation) were considered.

In this study it was assumed that potential ET remains the same. NC value was set = 80, AGUT was set = 100 mm, hi was set = 0 mm. The studied average annual rainfall was 727 mm/yr and the potential ET was 1339 mm/yr. The results obtained using the SPS (actual situation P) or the fraction of the SPS (90 % P, 80 % P, 70 % P), or the precipitation above a cutoff value (90 % P (≥2.8), 80 % P (≥4.8), 70 % P (≥6.5)), are represented in Table 1 and Fig. 1. The cutoff values were 2.8 mm/d for 90 % of SPS, 4.8 mm/d for 80 % of SPS, and 6.5 mm/d for 70 % of SPS. For the studied scenarios, annual recharge values may be as low as 0 % of the actual recharge for the low rainfall years (1982-1983), or may be as high as 96 % for
the high rainfall years (1989-1990). As can be observed in this table, the distribution of precipitation plays an important role, which explains why the 1985-1986 hydrologic year, with lower precipitation than the 1982-1983 hydrologic year, still allows the computation of important recharge values.

**Table 1** Recharge computation for the 1982-1990 precipitation series, and fraction of recharge forecasted for different precipitation scenarios in relation to the 1982-1990 estimated recharge

<table>
<thead>
<tr>
<th>Hydrologic year</th>
<th>P (mm/a) [actual situation P]</th>
<th>R (mm/a) [actual situation P]</th>
<th>R (%) [scenario: 90%P]</th>
<th>R (%) [scenario: 90%P(≥2.8)]</th>
<th>R (%) [scenario: 80%P]</th>
<th>R (%) [scenario: 80%P(≥4.8)]</th>
<th>R (%) [scenario: 70%P]</th>
<th>R (%) [scenario: 70%P(≥6.5)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982-1983</td>
<td>650</td>
<td>94</td>
<td>51%</td>
<td>67%</td>
<td>52%</td>
<td>40%</td>
<td>54%</td>
<td>0%</td>
</tr>
<tr>
<td>1983-1984</td>
<td>742</td>
<td>183</td>
<td>83%</td>
<td>89%</td>
<td>52%</td>
<td>46%</td>
<td>54%</td>
<td>72%</td>
</tr>
<tr>
<td>1984-1985</td>
<td>860</td>
<td>344</td>
<td>84%</td>
<td>89%</td>
<td>68%</td>
<td>52%</td>
<td>61%</td>
<td>54%</td>
</tr>
<tr>
<td>1985-1986</td>
<td>621</td>
<td>177</td>
<td>80%</td>
<td>88%</td>
<td>58%</td>
<td>36%</td>
<td>66%</td>
<td>36%</td>
</tr>
<tr>
<td>1986-1987</td>
<td>662</td>
<td>153</td>
<td>75%</td>
<td>78%</td>
<td>53%</td>
<td>31%</td>
<td>68%</td>
<td>54%</td>
</tr>
<tr>
<td>1987-1988</td>
<td>849</td>
<td>243</td>
<td>80%</td>
<td>77%</td>
<td>66%</td>
<td>39%</td>
<td>60%</td>
<td>33%</td>
</tr>
<tr>
<td>1988-1989</td>
<td>498</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1989-1990</td>
<td>932</td>
<td>424</td>
<td>87%</td>
<td>96%</td>
<td>73%</td>
<td>59%</td>
<td>84%</td>
<td>76%</td>
</tr>
<tr>
<td>Average</td>
<td>727</td>
<td>202</td>
<td>81%</td>
<td>86%</td>
<td>63%</td>
<td>45%</td>
<td>74%</td>
<td>57%</td>
</tr>
</tbody>
</table>

**Fig. 1** Results of the BALSEQ model in absolute values and relative values

**CONCLUSIONS**

This paper intended to demonstrate the ability of the soil daily water mass balance methodology to deal with the study of the impact of climatic changes on groundwater recharge. It has been shown how different precipitation series may influence groundwater recharge. For the studied time series, for 70 % of precipitation scenario, average forecasted recharge values would lower to 45 % of the recharge calculated for the original precipitation series. The distribution of yearly recharge values shows how precipitation distribution is
important in the calculated recharge. This means that the forecasting of precipitation series scenarios is of major importance to study the impact of climate change on groundwater recharge. Moreover it also proves the adequacy of the daily water balance models to carry out these studies in relation to other models.

For instance, it has been mentioned how groundwater recharge could be forecasted for climate change scenarios using laws that relate actual groundwater recharge with precipitation. For this approach it must be assumed that precipitation in the future follows the same distribution patterns of the analyzed series, which means that it does not take into account the variability of precipitation distribution in the definition of the recharge value.

For their predictive properties, the daily water mass balance methods are the more adequate to forecast the impact of climate changes on groundwater recharge. A more elaborated study is envisaged where the ET series and the AGUT values may vary with the vegetation development stage. So, besides precipitation and ET, the area occupied by vegetation and the characteristics of vegetation are required. Oliveira (2003, 2004) presented a soil daily sequential water balance model that takes these characteristics into account. The main needs now are to be able to forecast precipitation series, reference ET series, areas occupied by vegetation and predict the vegetation type (which implies the knowledge of their vegetative cycle, and their characteristics that condition ET).

**Acknowledgements** This study was developed in the framework of two Programmed Research Studies of the National Laboratory of Civil Engineering (LNEC) for 2001-2004: "Calibration of methods for assessment of regional aquifer recharge, Laboratory tests and Mathematical modeling of infiltration and flow, in vadose and saturated zone" and "Resource and hydrogeological risk evaluation of volcanic islands"; and is also included in the
subsequent Programmed Research Study of LNEC for 2005-2008: "Analysis of the climate change effects on groundwater systems".

REFERENCES


