
Journal of Integrated Coastal Zone Management / Revista de Gestão Costeira Integrada, 16(3):343-355 (2016) 

http://www.aprh.pt/rgci/pdf/rgci-660_Carmo.pdf            |  DOI: 10.5894/rgci660 

Nonlinear and dispersive wave effects in coastal processes* 

José Simão Antunes do Carmo a

ABSTRACT 
Numerical models are useful instruments for studying complex superposition of wave-wave and wave-current interactions in 
coastal and estuarine regions, and to investigate the interaction of waves with complex bathymetries or structures built in near-
shore areas. The ability of the standard Boussinesq and Serre or Green and Naghdi equations to reproduce these nonlinear 
processes is well known. However, these models are restricted to shallow water conditions, and addition of other terms of dis-
persive origin has been considered since the 90’s, particularly for approximations of the Boussinesq-type. Using the general 
wave theory in shallow water conditions, the different approaches commonly used in hydrodynamics studies in river systems, 
estuaries and coastal zones are initially addressed. Then, to allow applications in a greater range of shallow waters, namely in 
intermediate water conditions, a new set of extended Serre equations, with additional terms of dispersive origin, is presented 
and tested with available data in the literature. The hydrodynamic module, composed of the extended Serre equations, is then 
used as part of a morphodynamic model, which incorporates two more equations taking into account various processes of 
sediment transport. The wave velocity-skewness and the acceleration-asymmetry are taken into account and discussed based 
on numerical results and physical considerations. 
Keywords: Wave theory in shallow waters, extended Serre equations, sediment transport, Bailard model, wave acceleration-
asymmetry, wave velocity-skewness. 

RESUMO 
Efeitos não-lineares e dispersivos da onda nos processos costeiros 
Os modelos numéricos são instrumentos úteis para estudar a propagação de ondas em meios com diferentes características, 
desde águas profundas (ao largo) até condições de água pouco profunda, e investigar a interação de ondas com batimetrias 
complexas ou estruturas construídas em regiões costeiras e estuarinas. As capacidades de modelos do tipo Boussinesq e as 
equações de Serre, ou de Green e Naghdi, para reproduzir os processos não-lineares de diversas interações são bem 
conhecidas. No entanto, estas aproximações clássicas restringem-se a condições de águas pouco profundas. Desde meados da 
década de 90 têm sido desenvolvidas formulações que modificam ou acrescentam termos de origem dispersiva para apli-
cações mais generalizadas, particularmente em aproximações do tipo Boussinesq. Recorrendo à teoria geral das ondas em 
condições de águas pouco profundas, são aqui apresentadas, em primeiro lugar, as aproximações comumente usadas em 
estudos da hidrodinâmica em meios fluviais, estuários e zonas costeiras. Tendo como objetivo alargar o campo de aplicação a 
outros domínios, em particular a condições de águas intermédias, é em seguida apresentada e testada com dados experi-
mentais uma formulação das equações clássicas de Serre com melhores características dispersivas lineares. Por fim, é pro-
posto um modelo morfodinâmico 1DH composto por um módulo hidrodinâmico, que resolve as equações expandidas de Serre, 
e por duas equações que incorporam vários processos de transporte sedimentar. Em particular, são avaliados e discutidos 
termos de transporte induzidos pelo enviesamento (skewness) e pela assimetria da onda. 
Paravras-chave: Teoria da onda em água pouco profunda, equações expandidas de Serre, transporte sedimentar, modelo de 
Bailard, enviesamento e assimetria da onda. 
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1. Introduction

Knowledge of the flow characteristics associated with 
surface waves and currents, and their dependency on 
the bathymetry and coastal geometry, is of considerable 
importance when designing structures commonly found 
in the coastal environment, like groynes and break-
waters. Such knowledge also helps to predict the modi-
fications thereby introduced into sea disturbance and 
into transport and deposition of sediments. 
By the end of the 70’s linear models were used to 
simulate the refraction effect produced by depth 
variation along the direction of the wave crest 
propagation, and the diffraction effect produced by the 
gradient of the wave amplitude along its crest. In the 
80’s other models, that take into account not only de 
refraction but also the diffraction process, have been 
proposed and commonly used by Berkhoff et al. (1982), 
Kirby & Dalrymple (1983), Booij (1983), Kirby (1984) 
and Dalrymple (1988), among many others. However, 
as they are based on the linear theory, those models 
should not be utilized in shallow water conditions.  
Even at that time, models based on the Saint-Venant 
equations were frequently used in practical applications. 
However, as has been widely demonstrated, in shallow 
water conditions and for some types of waves, models 
based on a non-dispersive theory, of which the Saint-
Venant model is an example, are limited and are not 
usually able to compute satisfactory results over long 
periods of analysis (Santos, 1985). Nowadays, it is 
generally accepted that for practical applications the 
combined gravity wave effects in shallow water 
conditions must be taken into account. In addition, the 
refraction and diffraction processes, the swelling, 
reflection and breaking waves, all have to be 
considered. 
A number of factors has made it possible to employ 
increasingly complex mathematical models. Not only 
our theoretical knowledge of the phenomena involved 
has improved greatly, but also the numerical methods 
have been used more efficiently. The great advances 
made in computer technology, especially since the 
1980s, improving information processing and enabling 
large amounts of data to be stored have made possible 
the use of mathematical models of greater complexity 
and with fewer restrictions. 

Therefore, only models of order  ( ), where 
h0 and λ represent, respectively, depth and wavelength 
characteristics) or greater, of the Boussinesq or Serre 
types (Boussinesq, 1872; Serre, 1953), are able to 
reproduce several phenomena in addition to the 
dispersive effects, including the non-linearities resulting 
from wave-wave and wave-current interactions, and the 
waves resulting from sudden time-bed-level changes 

that cause tsunamis, wherein submerged landslides in 
reservoirs, or landslides on reservoir banks, are 
examples of such changes.  
In the past few years, the possibility of using more 
powerful computational facilities along with the 
technological evolution and sophistication of control 
systems have required a thorough theoretical and 
experimental research designed to improve the 
knowledge of coastal hydrodynamics. Numerical 
methods aimed to applications in engineering fields 
more sophisticated and with a higher degree of 
complexity have also been developed. 
In Section 2, the general shallow water wave theory is 
used to develop different mathematical approaches, 
which are nowadays the basis of the most sophisticated 
models in hydrodynamics and sedimentary dynamics. 
An extension of the Serre equations for applications in 
intermediate water conditions and comparisons of 
numerical results with physical data available in the 
literature are presented in Sections 3 and 4. Then, a 
morphodynamic model composed of this hydrodynamic 
module and a sediment transport model is proposed and 
discussed in Section 5. The sediment transport model 
consists on a sediment conservation equation and a 
dynamic equation. An improved version of Bailard 
model, incorporating various sediment transport 
processes, is used as the dynamic equation of the solid-
phase model. It is shown that both the skewness and the 
wave asymmetry lead to an increase of the sediment 
transport in the wave direction. 

2. Mathematical formulations

We start from the fundamental equations of the Fluid 
Mechanics, written in Euler’s variables, relating to a 
three-dimensional and quasi-irrotational flow of a 
perfect fluid [Euler equations, or Navier-Stokes 
equations with the assumptions of non-compressibility 
(dρ/dt = div  = 0), irrotationality (rot = 0) and perfect 
fluid (dynamic viscosity )]: 

(1) 

; ; 

with  at ,  at 

, and  at . 

In these equations ρ is density, t is time, g is 
gravitational acceleration, p is pressure, η is free 
surface elevation,  is bottom, and (u, v, w) are velocity 
components. 
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Defining the dimensionless quantities  and 
σ = h0/λ, in which  is a characteristic wave amplitude, 
h0 represents water depth, and λ is a characteristic 
wavelength, we proceed with suitable non-dimensional 
variables: 

, , , , 
, , , 

, 

, 

, 

where  represents critical celerity, given by 
c0 = (gh0)1/2,  is free surface elevation,  represents 
bathymetry, u, v and w are velocity components, and p 
is pressure.  
In dimensionless variables, without the line on the 
variables, the fundamental equations and the boundary 
conditions are written (Carmo & Seabra-Santos, 1996): 

A – Fundamental equations 
a) 

b) 

c) (2) 

d) 

e) ; ; 

B – Boundary conditions 

a) w = (1/ε)ξt + uξx +νξy ,  z = -1 + ξ 
b) ,  z = εη (3) 
c) p = 0 ,  z = εη 

Integrating the first equation 2.a) between the bed 
 and the free surface , taking into account 3.a) 

and 3.b), yields the continuity equation (4): 

(4) 

where the bar over the variables represents the average 
value along the vertical. Then, accepting the fundamen-
tal hypothesis of the shallow water theory, 

, and developing the dependent variables 
in power series of the small parameter σ2, that is 

, for (5) 

where , from continuity 2.a) and with 3.a) 
and 3.b) we obtain: 

(6) 
(7) 

where the simple and double asterisk represent the 
variables values at the bottom and at the surface, 
respectively. Of 2.e) we obtain, successively (Santos, 
1989): 

(8) 

(9)

so that the average values of the horizontal components 
of the velocity, on the vertical, are given by:

(10) 

On the other hand, taking into account that, 

 for (11) 

from (5) and (9) we obtain: 

(12) 

Representing by  the 
vertical acceleration of the particles, we get 

, and from 
(6), (7) and (11) the following approach is obtained: 

(13) 

in which the terms within the two first parentheses rep-
resent the vertical acceleration when the bottom is hori-
zontal, and the terms inside the third parenthesis repre-
sent the vertical acceleration along the real bottom. It 
should be noted that equation 2.d) can be written: 

(14) 

where, for vertical integration between the bottom and 
the surface, the pressure p on the surface is obtained: 

(15) 
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which, along with 2b) and 2c), allow us to obtain 
(Santos, 1989): 

(16) 

or even, given that , where 
 and : 

(17) 

By developing expressions (17) in second approach 
(order 2 in ), the following equations of motion (18) 
are obtained (Santos, 1989; Carmo, 2015): 

 (18) 

where, likewise, the bar over the variables represents 
the average value along the vertical. In dimensional 
variables and with a solid/fixed bottom ( ), the 
complete set of equations is written, in second ap-
proach: 

(19) 

where  is total water depth. The one-
dimensional form (1HD) of the equation system (19) is 
written, also with a fixed bottom: 

(20) 

Assuming additionally a relative elevation of the surface 
due to the waves ( ) having a value close to the 
square of the relative depth ( ), i.e. =

, from the equation system (18), and at the same 
order of approximation, the following approach is ob-
tained, in dimensional variables: 

(21) 

where  is the water column height at rest,  
and  are given by  and 

. The momentum equations are written: 

(22) 

(23) 

with , the complete system of equations (24) is 
obtained: 

(24) 
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Further simplifying the equations of motion (18), 
retaining only terms up to order 1 in , i.e., neglecting 
all terms of dispersive origin, this system of equations 
is written in dimensional variables: 

 (25) 

Approaches (19), (24) and (25) are known as Serre 
equations, or Green & Naghdi, Boussinesq and Saint-
Venant, respectively, in two horizontal dimensions 
(2HD models). The classical Serre equations (19) (or 
Green & Naghdi, 1976) are fully-nonlinear and weakly 
dispersive. Boussinesq equations (24) only incorporate 
weak dispersion and weak non-linearity, and are valid 
only for long waves in shallow waters. As for the Bous-
sinesq-type models, also Serre’s equations are valid 
only for shallow water conditions. 

3. Derivation and numerical formulation of higher
order Serre equations

3.1. Mathematical derivation 

To allow applications in a greater range of , other 
than shallow waters, a new set of extended Serre equa-
tions, with additional terms of dispersive origin, is de-
veloped and tested in Carmo (2013a,b) by comparisons 
with the available test data. The methodology used by 
Beji & Nadaoka (1996) and later by Liu & Sun (2005), 
to obtain an improved set of Boussinesq equations, was 
used to improve the dispersion characteristics of equa-
tions (20). 
From the equation system (20), by adding and subtract-
ing terms of dispersive origin, using the approximation 

 and considering the parameters ,  and , 
with , allows to obtain a new system of 
equations with improved linear dispersion characterist-
ics: 

(26) 

where . 

After linearization of the equation system (26), the fol-
lowing dispersion relation is obtained, similar to the one 
obtained by Liu & Sun (2005) for an extended version 
of Boussinesq equations: 

(27) 

Comparing equation (27), written in terms of the phase 
speed (28) 

(28) 

with the linear dispersion relation , 
using the approach (29) 

(29) 

allows to obtain values for the parameters α and γ. In a 
first approximation, we can suggest:  and 

 (Carmo, 2013a, b). It can be proven that a 
value of  within the interval  could be a 
good choice (Clamond et al., 2015). Considering these 
boundaries for , the parameter  will be within the 
interval . It should be noted that with 

, as proposed by Madsen et al. (1991) 
and Madsen & Sørensen (1992) for an extended version 
of the Boussinesq equations, the value  is obtained.

Different approaches for the wave and group celerity, 
up to order , can be found in Simarro (2013) and 
Simarro et al. (2015). Through analyses of the wave 
shoaling in one-layer, and comparing the shoaling 
errors for different sets of Boussinesq-type equations, 
Simarro (2013) propose the following values: 
β = 0.06219 instead of β = 0.06667, as also proposed by 
Madsen & Sorensen (1992), or β = 0.15278 instead of 
β = 0.20, as suggested by Beji & Nodaoka (1996). 
Using  and with , a value of 

 is obtained. It is thus evident that further 
studies on this matter are needed, but this is not the goal 
of the present work. Values of  and 

 are used in this work. 

3.2. Numerical solution 

The equation system (26) is solved using an efficient
finite-difference method, whose consistency and sta-
bility are tested in Carmo (2013a,b) by comparison with 
a closed-form solitary wave solution of the Serre 
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equations. For this purpose, the terms containing 
derivatives in time of u are grouped. The final system of 
three equations is re-written according to the following 
equivalent form (SERIMP model) (Carmo, 2013a,b): 

(30a) 

(30b) 

(30c) 

  (30d) 

To compute the solution of equation system (30) (values 
of the variables h and u at time ) we use a numeri-
cal procedure based on the following scheme, itself 
based on the last equation system (30), for variables h, q 
and u. Knowing all values of  and , , in the 
whole domain at time , the equations (30c) and 
(30d) are used to obtain the first values of  and  in 
the whole domain. Then, we continue with the following 
steps, in which the index p means predicted values 
(Carmo, 2013a,b):

(1) The first equation (30a) is used to predict the vari-
able values  at time  ( ), in the whole 

domain. 
(2) The second equation (30b) makes it possible to 

predict the variable values  at time ( ), 

taking into account the values 
, namely for  in the whole 

domain. 
(3) The third equation (30c) makes it possible to com-

pute the mean-averaged velocities  at time 
, taking into account the predicted values 

 and , namely for  in the whole do-

main. 
(4) The first operation (step 1) is repeated in order to 

improve the accuracy of the variable values  at 
time  ( ), using the values 

 in the whole domain. 

(5) Finally, the second operation (step 2) is repeated in 
order to improve the accuracy of the variable values 

 at time  ( ), taking into account the 
values and 

 in the whole domain. 

At each interior point i, the first, second and third-order 
spatial derivatives are approximated through centered 
differences and the time derivatives are approximated 
using forward differences. The convective terms 
and (uq)x in equations (30a) and 30b) are approximated 
through centered schemes in space and time for vari-
ables h and q. At each time t, these terms are written in 
the following form: 

(31) 

(32) 

All finite-difference equations are implicit. Therefore, 
the solution of system (30) requires, in each time step, 
the computation of five three-diagonal systems of N-2 
equations (steps 1 to 5), which are easily computed 
using the three-diagonal matrix algorithm (TDMA), also 
known as the Thomas algorithm. The stability condition 
to be observed can be expressed in terms of the 
Courant/CFL number, and is given by: 

 (33) 

More accurate results are obtained with a domain 
discretization comprising about 25 to 30 points per 
wavelength and the condition (33) much lesser than 
unity, even below 0.5.  
This numerical model (SERIMP) was used and tested in 
Carmo (2013a). With α = β = 0, a comparison is 
presented with a closed-form solitary wave solution of 
these equations for a wave with a/h0 = 0.60. As can be 
seen, the agreement between the numerical results and 
the analytical solution is perfect as much in wave 
amplitude as in phase (Carmo, 2013a). 

3.3. Boundary conditions 
If an incident wave elevation  is given on the 
boundary (at x = 0) and the wave height is small 
compared to the water depth, the linear wave theory can 
be used to obtain the velocity of the incident wave 
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(34) 

where  and  is the water 
column height at rest on the boundary. Different kinds 
of wave patterns may be used. For mono-chromatic 
waves, the water-surface elevation  is given by 

, where a,  and k are, respectively, 
the wave amplitude, frequency and wave number. 
In general, our goal at the output boundary is to avoid 
reflections of the wave. To do this, the domain is ex-
tended with a damping region of length Ldamp. Terms 
like  and  may be added to the evolu-
tion equations for  and , respectively. The length of 
the damped region is chosen such that we do not see 
any significant reflections. The implemented procedure 
is similar to that described in Zhang et al. (2014). 
The terms  and  are added to the 
second member of h- and u-equations (26), 
respectively. As a first approximation, these terms can 
be written as: 

(35) 

(36) 

where  is the free surface elevation, 

, ,  is 
the sponge length, and 

, n = 2. 

4. Applications of the 1HD extended Serre equations

4.1. Solitary wave travelling up a slope and 
reflection on a vertical wall 

Experimental data and numerical results are available 
for a solitary wave propagating on the bathymetry 

shown in Figure 1 (Carmo, 2013a,b). It shows a constant 
depth before x = 55 m and a slope 1:50 between 
x = 55 m and x = 75 m. An impermeable vertical wall is 
placed at x = 75 m, corresponding to fully reflecting 
boundary conditions. A solitary wave of amplitude 0.12 
m is initially centered at x = 25 m. The computational 
domain was uniformly discretized with a spatial step 

m. A zero friction factor has been considered.
Computations were carried out with a time step 

s. Figure 2 compares numerical time series
of surface elevation and test data at x = 72.75 m. 
Figure 2 shows two peaks; the first one corresponding 
to the incident wave, and the second to the reflected 
wave. As pointed out in Carmo (2013a), the extended 
Serre model predictions for both peaks agree well with 
the measurements. RMSE values equal to 0.0090 m and 
0.0117 m were found in first and second peaks, 
respectively, for the wave height. Regarding the phase, 
there is a loss of approximately 0.05 s and of 0.10 s in 
those peaks. 
Predictions of the extended Boussinesq equations for 
both peaks are less accurate. Particularly for the 
reflected peak, this is overestimated in about 20%. This 
result is not surprising, given the lower validity of the 
Boussinesq model for waves of higher relative 
amplitude. Indeed, this model assumes , 
contrary to the Serre model, which is . We used 
the extended Boussinesq model developed by Liu & 
Sun (2005). However, a similar study performed by 
Walkley & Berzins (1999), using the extended 
Boussinesq model developed by Nwogu (1993), shows 
no relevant differences in the graphs. 

4.2. Periodic wave over an underwater bar 

Beji & Battjes (1993) conducted experiments in a flume 
of 0.80 m wide with a submerged trapezoidal bar. The 
up- and down-wave bottom slopes of the submerged bar 
are 1:20 and 1:10 respectively. Before and after the bar, 
the water depth is 0.40 m, with a reduction to 0.10 m 

Figure 1 - Bathymetry for a solitary wave travelling up a slope and its reflection on a vertical 
wall (not in scale). 

Figura 1 - Batimetria para a propagação de uma onda solitária sobre um trecho inclinado e sua 
reflexão numa parede vertical (fora de escala). 
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Figure 2 - Solitary wave travelling up a slope and its reflection on a vertical wall. Free surface eleva-

tion in a depth gauge located at x = 72.75 m. Experimental ( ); Serre extended ( ); 
Boussinesq extended ( ) (adapted from Carmo, 2013a). 

Figura 2 - Propagação de uma onda solitária sobre um trecho inclinado e sua reflexão numa 
parede vertical. Variação da superfície livre numa sonda localizada em x = 72.75 m. Experi-

mental ( ); Serre com características dispersivas melhoradas ( ); Boussinesq com 
características dispersivas melhoradas ( ) (adaptada de Carmo, 2013a). 

above the bar, as shown in Figure 3. Experimental data 
obtained in this installation are available in the litera-
ture, and can be used for comparisons. The measured 
data are compared with numerical results of a 1HD ex-
tended version of the Boussinesq model (24), with 

 and , and the extended Serre 
equations (26) (SERIMP model) in Carmo (2013b), 
both improved with linear dispersive characteristics.  
Comparisons are made in three wave gauges located at 
x = 10.5 m, x = 13.5 m and x = 17.3 m. For this purpose, 
a regular incident wave case with height 0.02 m, period 
T = 2.02 s and wavelength 3.73 m has been simulated. 
The computational domain was discretized with a uni-
form grid interval  = 0.025 m. A time step

 = 0.0010s was used. Globally, numerical results of 
the improved Serre and Boussinesq models agree quite 
well with the measured data (Carmo 2013b).  
Following is presented a comparison of the standard 
Serre’s model (20) with the extended Serre equations 
(26) (SERIMP model). The standard Serre’s model (20) 
is only valid for shallow waters, thus under conditions 
up to . In this experiment, the dispersion 

parameter ( ) is greater than 0.05 (about 0.11) 
in front and behind the bar, and therefore affects the va-
lidity of the numerical outcomes. Due to the fact that 
over the bar there are very shallow water conditions
( ) the standard Serre equations are used con-
sidering the input boundary located at section 
x = 13.5 m, where the input signal is known (measured 
data). In this way, results of the Serre’s standard model 
are not influenced, as would happen, by changes arising 
from the wave propagation before the bar, under inter-
mediate water depths. 
Figure 4 shows a comparison of numerical results of the 
standard Serre’s model (20) with the extended Serre 
equations (26), considering, in the first case, the input 
boundary at x = 13.5 m (gauge signal) (Carmo, 2013b; 
2015). The influence of additional terms of dispersive 
origin included in the extended Serre equations is clearly 
shown in Figure 4. The standard Serre model results 
(dashed line) are clearly of lesser quality. It should be 
noted that this application also demonstrates the good 
behavior of our numerical model to propagate a complex 
signal imposed at boundary. 

Figure 3 - Bathymetry for a periodic wave propagating over a bar (not in scale). 
Figura 3 - Batimetria com barra sobre a qual se propaga uma onda periódica (fora de escala). 
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Figure 4 - Periodic wave propagating over a bar. Comparison of test data (  

€

__) with numerical re-
sults of the extended Serre model (26) ( ) and the standard Serre equations (20) ( ) 
(adapted from Carmo, 2013b, 2015). 

Figura 4 - Propagação de uma onda periódica sobre um fundo com barra. Comparação de dados expe-

rimentais ( ) com resultados numéricos do modelo de Serre melhorado (26) ( ) e com 
resultados das equações clássicas de Serre (20) ( ) (adaptada de Carmo, 2013b; 2015). 

5. Sediment transport model

5.1. Mathematical formulation 

The Bailard model (Bailard, 1981) does not consider 
the contribution of the wave acceleration-asymmetry in 
the sediment transport. As outlined in Dubarbier et al. 
(2015), models frequently used to estimate the evolu-
tion of beach profiles are inefficient with regard to the 
simulation of bottom shapes and migration of bars. This 
may be attributed to the absence of transport induced by 
acceleration-asymmetry of the wave.  
In the following we use a 1HD model to compute the 
sediment transport in a channel, over a sand pit, and 
examine its ability to generate and propagate ripples 
and other bottom shapes. The morphodynamic model 
consists of the hydrodynamic equations (26) and the 
following sediment conservation equation (37) and a 
dynamic equation (38), in which four sediment trans-
port processes are incorporated (Carmo, 2015): 

(37) 

(38) 

where 

(39) 

(40) 

(41) 

(42) 

In equations (37) and (38),  represents mean values 
of the arguments in the wave period, qst is the net sedi- 
 

ment transport, which is composed of the bedload 
transport, qsl, the suspended load transport, qss, the 
skewness related transport, qsk,  and the transport related 
to wave asymmetry, qsy; u is the wave velocity, p is the 
sediment porosity,  is the internal angle of friction, 

 and  are efficiency co-
efficients, ws  is the sediment fall velocity, csl and css are 
global rugosity coefficients, csk and csy are calibration 
coefficients.  is the orbital ve-

locity amplitude,  is a measure of or-

bital velocity-skewness, and is

the velocity asymmetry coefficient, where  is 
the Hilbert transform of . The asymmetry coefficient is
here approximated by

€

Aasy = a3 arms
3 , with , 

being a the wave acceleration.  
All calibration coefficients, in particular the efficiencies 
(εa, εs) and (csk , csy), which represent the incomplete 
knowledge in our understanding of these processes, re-
quire a site-specific morphodyamic calibration. Once 
properly calibrated a comprehensive cross-shore profile 
model may predict the bar dynamics on the time-scale 
of days (at least). However, it must be noted that this 
calibration process is non-trivial since a large number 
of model coefficients is involved, typically requiring a 
large number of computations and optimization strat-
egies. At a first approach, coefficients csk and csy are of 
the order of 10-6 to 10-5, and are not necessarily equal. 
This work shows comparisons of numerical results con-
sidering csk = csy = 5x10-6 and csk = csy = 10-5. Anyway, 
it should be noted that the effects are in a significant 
part determined by the calibration coefficient settings 
that have been kept constant. 
Bed slope-related transport is included according to the 
Bailard equation increasing (decreasing) the down-slope 
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(up-slope) sediment transport. Equation (37) is easily 
computed using the Weighted Essentially Non-
Oscillatory (WENO) scheme, as is presented in Long et 
al. (2008). 

5.2. Numerical applications 

Gardin (2004) compares the evolution of a bed profile 
with a pit using measurements and Delf3D computa-
tions. The sediment transport, especially cross-shore, 
was evaluated according to Bailard in the TRAN mod-
ule of Delft3D software, which takes into account the 
effects of slope and wave asymmetry. According to the 
measurements, an important sedimentation offshore the 
pit is noted. Gardin (2004) concluded that the numerical 
model allows to obtain the pit evolution in agreement 
with the observations, with however a slight shift of the 
pit in the offshore direction. 
The wave asymmetry effect is clearly shown in Groot 
(2005). Two transport formulas implemented in LO-
MOR model were applied in the prediction of the mor-
phological behavior of a sandpit. The sediment trans-
port due to wave asymmetry is neglected in both formu-
las. Numerical results of LOMOR using both formulas 
were compared with Delft3D computations. Delft3D 
takes into account velocity skewness and asymmetry. In 
all cases, the pit showed migration, damping and evolu-
tion of the slopes. However, contrary to LOMOR, 
Delft3D showed sedimentation downstream the pit. 
Measured and modeled results of an offshore and on-
shore sandbar migration are shown in Zheng et al. 
(2014). The authors noted that the velocity skewness de-
creases from the seaward boundary toward the seaward 
flank of the initial bar, and then it increases over the in-
itial bar and decreases over the area of final bar position, 
which is the region of active sandbar migration. After 
the final bar, velocity skewness increases toward the 
shoreline. The measured velocity asymmetry continu-
ously increases from offshore and reaches its maximum 
shoreward of the final bar crest and then decreases to-
ward the shoreline. Zheng et al. concluded that the on-
shore transport mainly appears where both velocity 
skewness and asymmetry are relatively high. 

Based on 41 experiments, Berni et al. (2012) obtained a 
large range of values for the free-stream skewness and 
large values of the asymmetry. The authors analyzed 
numerically and experimentally the asymmetry 
transformation process to skewness within the boundary 
layer. They concluded that this transformation results in 
skewed velocities near the bed that lead directly to net 
sediment transport. 
The dominant hydrodynamic processes governing 
cross-shore sandbar behavior have been discriminated 
by Dubarbier et al. (2015) using four modes of sedi-
ment transport driven by wave skewness and asym- 
 

metry, mean current and slope effects. They concluded 
that acceleration–skewness-induced transport system-
atically results in a slow onshore sandbar migration to-
gether with a slow bar growth. They also concluded that 
velocity–skewness-induced transport can drive onshore 
and offshore bar migrations with substantially larger 
rates. 
A morphodynamic model (MORSYS) was used by 
Rosa et al. (2011) to study the evolution of a sand pit 
offshore Vale do Lobo (Algarve, Portugal). The authors 
conclude that the simulations performed for a whole 
period of 2.5 years and during one month encompassing 
two storm events show similar trends for the 
morphological evolution of the sandpit. The obtained 
results allowed to evaluate the good performance of the 
numerical model. 
Sand extractions and formation of sand pits is a 
common activity in coastal zones. Therefore, the sand 
pit evolution, and in particular its migration and rate of 
replenishment should be reproduced with sufficient 
accuracy. Following, the evolution of a sand pit is 
studied using the morphodynamic model described 
above. 
In our numerical experiment, a wave with the following 
characteristics is considered: height H = 0.20 m, period 
T = 8 s, and wavelength = 24.8 m. This wave is 
introduced at the upstream boundary and propagated 
along a horizontal channel 1.0 m depth in the first 28.75 
m. From this point there is a sand pit, with the upstream
face having a slope 9.82% down to a minimum 

 and left constant between 31.55 m and 
32.175 m. Then the pit increases up to , having 
this face a positive slope 18.64%. A median diameter 

 mm is representative of the bottom grain size. 

Figure 5 shows the simulated wave along the channel 
with a sand pit, between 15 m and 45 m. The wave 
transformations that occurred are evident, increasing the 
skewness and asymmetry of the wave. Figure 6 shows 
bottom configurations obtained 450 waves after, cor-
responding to a simulation time of 60 minutes, con-
sidering the first two terms qsl, and qss of equation (38) 
(dashed line) and all terms of this equation with csk = csy 
= 5x10-6 (dotted line). Figure 7 shows bottom configu-
rations obtained 450 waves after, corresponding to a 
simulation time of 60 minutes, considering all terms of 
equation (38) with csk = csy = 5x10-6 (dotted line) and 
with csk = csy = 10-5 (bold line), respectively. 
Although lacking experimental evidence, the presented 
results seem to translate the physical phenomena. In-
deed, they exhibit identical behavior to that shown in 
the measured and simulated examples in the literature 
above. Observing Figures 6 and 7, a preliminary con-
clusion can be drawn. Excluding the transport associ- 
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Figure 5 - Initial velocity of the wave propagating over a sandpit. 
Figura 5 - Velocidade inicial da propagação de uma onda sobre uma cova de areia. 

Figure 6 - Bottom profiles after 60 minutes of simulation, considering terms qsl and qss of equation 
(38) (dashed line), and all terms qsl, qss, qsk and qsy of this equation with csk = csy = 5x10-6 (dotted 
line). 

Figura 6 - Configurações do fundo após 60 minutos de simulação, considerando os termos qsl  e qss da 
equação (38) (linha tracejada), e todos os termos qsl, qss, qsk e qsy desta equação com csk = csy = 
5x10-6 (linha ponteada). 

Figure 7 - Bottom profiles after 60 minutes of simulation, considering all terms qsl, qss, qsk and qsy of 
equation (38) with csk = csy = 5x10-6 (dotted line) and with csk = csy = 10-5 (bold line). 

Figura 7 - Configurações do fundo após 60 minutos de simulação, considerando os termos qsl, qss, qsk 
e qsy  da equação (38) com csk = csy = 5x10-6 (linha ponteada) e com csk = csy = 10-5 (linha car-
regada). 

ated with the wave velocity-skewness and the accelera-
tion-asymmetry reduces the onshore sediment transport 
(in the wave direction). Another evidence is the large 
difference in the bottom configurations considering 
relatively close values of csk and csy, thus showing great 
sensitivity to small variations of the involved constants. 

6. Conclusions

Analytical developments and results of the numerical 
models presented in this work are promising enough to 

warrant further developments in both fields of the 
hydrodynamics and morphodynamics. 
In hydrodynamic terms, extended versions of 
Boussinesq type models have shown a good 
performance. Less common are models of extended 
Serre equations, example of which is the model 
translated by equations (26); however, as is widely 
recognized, under certain conditions, the Serre 
equations more accurately simulate the behavior of the 
physical phenomena than Boussinesq type models. 
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In morphodynamic terms, it is known that the term 
<|u2|u> is associated with the short wave asymmetry and 
skewness in the surf zone. It is zero when there is no 
short wave skewness and a positively skewed wave re-
sults in an onshore directed transport. Consequently, as 
is reported in literature and this work also shows, the 
wave asymmetric oscillatory flow contributes to a 
shoreward directed net sediment transport.  
The numerical results presented in this work, although 
qualitative, seem to translate the physical behavior of 
the processes involved. It is clearly shown that the 
skewness and wave asymmetry lead to an increase of the 
sediment transport in the wave direction. 
An extended version of the two-dimensional equation 
system (19) with improved linear dispersion 
characteristics and using a finite element method is 
being developed and will be published soon. Also the 
experimental validation of the morphodynamic model 
will take place as quickly as possible. 

Appendix 

Supporting Information associated with this article is available on-
line at http://www.aprh.pt/rgci/pdf/rgci-
660_Carmo_Supporting-Information.pdf 
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