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Abstract For more than a decade, Artificial Neural Networks (ANNs) have been increasingly 
used in hydrology as flexible black-box models of non-linear type.  Within this category of 
models, the ‘multi-layer feed-forward network’ used in this study consists of an input layer, 
an output layer, and one ‘hidden’ layer in between.  The model is applied to daily data of 
three catchments, all located in North-West France, for river flow simulation and forecasting 
and its performance is compared with those of five system-theoretic models and one 
conceptual model.  The ANN is observed to be the best performing individual model for the 
catchments tested.  In the subsequent application of the Neural Network Method (NNM) for 
combining the outputs of the individual models, in different combinations, i.e. in a ‘multi-
model approach’ for deriving consensus forecasts, the NNM (as one of three Model Output 
Combination Techniques (MOCTs) considered) is found to be the best performing MOCT 
and better also than the best individual model.  The ‘Galway Flow Modelling and Forecasting 
System GFMFS)’, a software package developed by the present authors, is used in the study.   

Key words:  Black-box models, hidden layer, multi-model approach, Neural Networks 

 
INTRODUCTION 
 
With the advent of advanced computing technologies, newer concepts and techniques such as 

Artificial Neural Networks (ANNs) have found extensive use in hydrology.  ANNs, being 

conceptually analogous to the biological neural network controlling the functions of the 

human brain, are highly interconnected networks of basic processing units, called neurons, 

have weights associated with the links (or information pathways) between the neurons. The 

ANN approach is essentially data driven and considered to be appropriate in situations where 

the overall transformation process and its sub-processes are not explicitly defined and 

satisfactory explanations of the physical relationships involved can not be advanced.  As deep 

physical interpretations cannot be ascribed to the weights determined during training of the 

ANNs (Minns and Hall, 1996), the models based on ANNs are considered as being ‘black-

box’, of non-linear type.  For simulating and forecasting river flows, the outputs of the highly 

non-linear, complex, and dynamic rainfall-runoff transformation process, ANNs have been 
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successfully applied as efficient tools.  Many studies have been carried out on the data of 

different catchment types for improving the performance of rainfall-runoff transformation 

models by using different network architectures, learning rules and training algorithms (e.g. 

Halff et al. (1993); Smith & Eli, (1995); Shamseldin, (1997); Dawson & Wilby, (1998), ; 

Campolo et al., (1999); Tokar & Johnson, (1999); Zealand et al., (1999); Birikundavyi et al., 

(2000); Tingsanchali & Gautam, (2000); Sivakumar et al., (2002); Jain & Indurthy, (2003); 

and Rajurkar et al., (2004).  Innovative ANN applications include those of Hu et al. (2001) 

who developed the ‘range dependent’ neural networks based on the clustering algorithm, 

Shamseldin et al. (1997) and Shamseldin & O’Connor (1999, 2001) who used ANNs for 

combining outputs of individual models and for forecast updating, and Toth et al. (2000) who 

applied ANNs to predict short-term rainfall for real-time flood forecasting.  

 In the present study, a multiple-input single-output feed-forward form of neural network is 

used for continuous rainfall-runoff simulation, operating firstly as an individual model (ANN) 

and subsequently as a method (NNM) for combining the outputs from a number of different 

individual substantive models, including the ANN.  Three catchments, located in the North-

West of France, have been chosen for the study.  The performance of the ANN as an 

individual model is compared with that of the conceptual Soil Moisture Accounting and 

Routing model with Groundwater modification (SMARG), two forms (parametric P and non-

parametric NP) of two system-theoretic models, namely, the naïve Simple Linear Model (P-

SLM and NP-SLM) and the quasi-linear seasonally-based Linear Perturbation Model (P-LPM 

and NP-LPM), and finally the wetness-index based system-theoretic Linearly-Varying Gain 

Factor Model (LVGFM).  In each case, model simulation performance is evaluated on the 

basis of the Nash-Sutcliffe R2 index of model efficiency (Nash & Sutcliffe, 1970). 

  As a separate exercise, following the multi-model approach for simulating the flows by 

combining outputs from different models, three Model Output Combination Techniques 
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(MOCT) are applied in which strengths of individual models are pooled and perceptible 

weaknesses de-emphasised, producing a ‘consensus’ forecast.  The selected MOCTs are the 

Neural Network Method (NNM), the Weighted Average Method (WAM), and the Simple 

Average Method (SAM, as a naïve form of MOCT). The simulation performances (R2) of the 

MOCTs as well as the performance of the MOCTs vis-à-vis the best of the individual models 

are compared to assess the efficacy of the MOCT concept for the test catchments. On the 

basis of the results, conclusions are drawn and recommendations made 

. 

THE CATCHMENTS AND THE DATA CHARACTERISTICS 
  
The three small catchments considered in the study, identified here simply by their station 

codes J2034010, J3024010, and J4124420, are located in the Bretagne (Brittany) province in 

the north-west of France.  Daily data for these catchments were generously provided by 

Météo France and the Direction de l'Eau as a contribution to the MOPEX (Model Parameter 

Estimation Experiment) Project, and made available to the present authors for their 

contribution to the July 2004 MOPEX Workshop held in Paris. Table 1 provides some salient 

features of the catchments, and their locations are shown in Fig. 1.  As seen in Table 1, all 

three catchments have practically the same mean catchment altitude, their mean slopes being 

flatter than 1 in 100, and their areas (all small) are of the same order of magnitude. 

 Summary characteristics of the daily hydrological data for the catchments are given in 

Table 2.  The seasonal mean variations of evaporation, rainfall and discharge, all smoothed by 

Fourier harmonic analysis (using four harmonics), are shown in Fig. 2.  Each data set has 

2557 data points (for seven years), starting from August 1st 1995.  The hydrological 

characteristics of all three catchments display considerable uniformity in values and 

distribution throughout the data period which suggests that all three belong to the same 

hydrological regime.  For J4124420, the flow generation is least, and the evaporation highest. 
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Table 1   Catchment characteristics 

 

 

MODELS AND EFFICIENCY CRITERIA  
 

With the exception of the naïve SLMs (NP-SLM and P-SLM, used purely as base-line 

models), all the individual models applied in this study, namely, the conceptual SMARG 

model, the Linear Perturbation Model (P-LPM and NP-LPM), the Linearly-Varying Gain 

Station 
Code No. Station Name Area 

(km2)

Length of 
longest 

stream (km)

Altitude 
at outlet 

(m) 

Altitude at 
highest point 

(m) 

Mean 
altitude  

(m) 
J2034010 Le Guindy à Plouguiel 125 42.1 20 300 83 
J3024010 Le Guillec à Trézilidé 43 11.6 35 120 85 

J4124420 La Rivière de Pont-l’Abbé à 
Plonéour-Lanvern [Tremillec] 32.1 9.0 15 158 84 

Rainfall (mm/day) 
Evaporation (mm/day) 
Discharge (mm/day) 

Fig. 2   Smoothed seasonal variation of the hydrological variables. 

Smoothed by Fourier harmonic 
analysis (4 harmonics) 
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Fig. 1   Location map along with shape and size of the three catchments. 
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Factor Model (LVGFM) were developed at the Department of Engineering Hydrology at the 

National University of Ireland, Galway, Ireland. 

 

Table 2   Characteristics of hydrological daily data (period 1/8/1995-31/7/2002) 
 

 
 

The ‘Galway Flow Modelling and Forecasting System (GFMFS)’, a software package 

incorporating a suite of different hydrological models and techniques, also developed in 

Galway by the present authors, was used.  These models are described elsewhere (e.g. 

Kachroo & Liang, (1992), for SLM and LPM; Ahsan & O'Connor, (1994), for the LVGFM; 

Kachroo, (1992), for SMAR, the original version of SMARG; Goswami et. al, (2002) for 

SMARG and comprehensive description of all models used in this study). Likewise, the three 

MOCTs (SAM, WAM, and NNM) are described by Shamseldin et al. (1997).  Note that the 

structure of the individual ANN rainfall-runoff model is identical to that of the NNM form of 

MOCT used for consensus forecasting of flows.  For each neuron in the hidden layer (and 

also that in the output layer) of the neural networks used in this study, the received inputs yi 

are transformed to its output yout by the non-linear S-shaped activation transfer function 

 ( )[ ] ( ){ }[ ]∑∑ +−+=+= oiioiiout wywwywfy σexp11      (1) 

where f ( ) denotes the transfer function, wi is the input connection pathway weight, the 

summation extends from i = 1 to i = M, the total number of inputs, and wo is the neuron 

threshold (or bias), i.e. a base-line value independent of the input.  The term on the right hand 

Discharge Q (mm/day) Rainfall R (mm/day) Evaporation E (mm/day) 
Catchment Max Min Mean S.D Max Min Mean S.D Max Min Mean S.D 

% 
days 
R>E

J2034010 11.8 0.10 0.89 0.90 45.8 0.0 2.63 4.56 3.7 0.50 1.94 1.11 37.3
J3024010 14.4 0.30 1.45 1.28 49.9 0.0 2.78 4.66 3.6 0.34 1.88 1.17 38.7
J4124420 8.94 0.08 1.43 1.43 55.5 0.0 3.38 5.96 4.4 0.48 1.97 1.20 38.1



 6

side of Eqn.(1) is the widely-used logistic function, a form of sigmoid function, bounded in 

the range [0,1].  The weights wi, the threshold (or bias) w0 and the σ of different neurons can 

be interpreted as parameters of the selected network. If ‘L’ is the total number of neurons in 

the input layer and ‘m’ is the total number of neurons in the hidden layer, then the total 

number of weights to be estimated for the ANN or NNM models, is  [(L+1)m + (m+1)]. 

 Despite its well-known shortcomings (Kachroo & Natale, 1992), only the dimensionless 

global model-output efficiency index R2 (Nash & Sutcliffe, 1970) is used in this paper for 

judging the relative performance of the individual models and the MOCTs.  Whereas R2 = 1 

would denote the ideal or ‘perfect’ fit, it is generally agreed that R2>90% is indicative of a 

very good model fit, while that in the range of 80%-90% is a fairly good fit, and a range of 

60%-80% is considered unsatisfactory. 

 

METHODOLOGY 
 
Data gaps in the discharge series for J4124420 were synthetically filled by i) initially 

assuming -9.99 as the data value for each missing number, and ii) calibrating each model 

iteratively until the model performance in two successive tests converged, the discharge series 

used for filling the gaps in each iteration being the corresponding discharge estimates of the 

data values simulated in the previous iteration.  For each model, the series having the best (i.e. 

highest) R2 performance value was adopted for filling the original gaps in the series. 

 For the NP-SLM, the NP-LPM, and the LVGFM, the ordinary least squares (OLS) method 

is used for estimation of the system response function.  Calibration for these models involves 

determining a suitable value of memory length by trial and error by noting each time the 

shape of the system response until a satisfactory shape is obtained for a particular value of the 

memory length and near-maximum value of R2.  The OLS procedure is adopted also for 

estimation of parameters of the P-SLM and the P-LPM.  For the SMARG model, the optimum 
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parameter set is optimized using the Simplex search method by varying the memory length 

(by trial and error) of the surface runoff response function, and also the starting values and 

bounds of the parameters. 

 The connection pathway weights (wi) and the different neuron threshold values (w0) for the 

ANN model are estimated by a procedure usually referred to as training (or simply as 

calibration).  Rather than the more commonly used back-propagation learning algorithm, the 

Simplex optimization procedure is used in the present study in searching for the ‘optimum’ 

parameter set i.e. the ‘best’ values of the connection weights.  For the input and hidden layers, 

the number of neurons required for achieving the near-maximum value of R2 was selected by 

trial and error.   

 The SAM, WAM, and NNM forms of MOCT were applied to the outputs of all seven 

individual models, together with those of the best 6, 5, 4, 3, and finally the best 2 models. 

 The ‘split-record evaluation procedure’ was adopted for calibration and validation of all 

models.  Whereas data starting from the first data point to the end of the fourth year were used 

for calibration, the R2 values were evaluated over the last three calibration years, considering 

the first water-year’s data as the ‘warm-up’ period.  This warm-up period is in conformity 

with that adopted for all catchments, including the three catchments considered in the present 

study, at the Paris MOPEX Workshop of 2004 (O’Connor et al., 2004).  The relative 

performance of the models is adjudged from the R2 values in calibration. 

 

RESULTS AND DISCUSSIONS 
 
Table 3 shows the R2 values for each of the three catchments obtained by running each 

calibrated model.  Because of the naïve SLM representation of the outflow series as simply 

the convolution summation of the response function with the inflow series, the performances 

of the P-SLM and the NP-SLM are, as expected, generally inferior to those of all other 
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models, with the unconstrained NP-SLM form being generally better than that of the 

constrained P-SLM.   

Table 3   R2 values in calibration (Rc
2) and verification (Rv

2) produced by 7 models, and ranks 
 

J2034010 J3024010 J4124420 Model 
Rc

2 Rv
2 Rank Rc

2 Rv
2 Rank Rc

2 Rv
2 Rank 

P-SLM 47.75 54.42 7 31.44 37.29 7 50.89 54.66 7 
NP-SLM 48.00 55.66 6 46.72 52.62 6 52.51 57.95 6 
P-LPM 73.64 60.30 5 69.47 47.43 5 75.46 52.84 5 
NP-LPM 75.70 69.19 4 70.11 53.98 4 82.90 73.34 3 
SMARG 81.64 81.46 3 85.85 78.17 3 80.50 89.10 4 
LVGFM 85.65 92.14 2 86.61 88.48 2 86.54 87.42 2 
ANN 91.87 89.51 1 90.32 86.87 1 90.38 89.19 1 

 

As a result of the seasonality exhibited by the rainfall and the discharge series (see Fig. 2), the 

performances of the P-LPM and the NP-LPM are significantly better than their SLM 

counterparts.  For the catchments J2034010 and J3024010, a significantly better fit of the 

simulated discharge series is obtained by the conceptual SMARG model (in comparison with 

the four system-theoretic models), the R2 value with the SMARG model being more than 80% 

in both cases for both calibration and verification.  However, for J4124420, the R2 value 

obtained by SMARG model, while still greater than 80%, is nevertheless slightly lower than 

that produced by the NP-LPM for the calibration period but significantly higher for the 

validation period.  The LVGFM, an elaboration of the NP-SLM that uses the output of the 

best amongst the five above-mentioned models (SMARG, for all three catchments) as an 

auxiliary model to introduce linear variation of the gain factor with the selected catchment 

wetness index at each time-step, performs better than both forms of the SLM and the LPM, 

and its auxiliary model, SMARG.  However, the ANN model, which uses the recent outputs 

from the best individual model (SMARG) as inputs to the neurons in the input layer (in order 

to simulate storage effects) along with recent rainfall inputs, performs better than the 

LVGFM, the SMARG, and both forms of the SLM and LPM models. The ANN model, 

therefore, performs best among the individual substantive models tested, for all three 
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catchments.  The type of input series and the number of previous observed data values for the 

neurons in the input layer, the number of neurons in the hidden layer, and the resulting 

number of weights optimized for the chosen ANN models are provided in Table 4.  Although 

the number of weights (i.e. parameters) for describing the network renders the ANN models 

non-parsimonious, leading to more complexity and corresponding difficulty in optimization, 

yet the significant improvement in R2 values derived from application of the ANN models on 

the three catchments offsets these weaknesses and justifies their application. 

 

Table 4   Particulars of the network structure of the ANN models finally selected 
 

 

 The consensus simulation results, obtained by applying the MOCTs to the outputs of the 

individual substantive models in different combinations, are provided in Table 5 where it may 

be seen that the performance of the NNM is generally the best, followed by the WAM.  The 

highest performance in calibration is generally achieved by the NNM combining outputs from 

all seven individual substantive models, although performance levels significantly higher than 

that of the best individual substantive model for any catchment could still be achieved by the 

NNM with less than seven combined outputs.  SAM, being a special case of WAM, with 

equal weights, generally performs worse than the other two MOCTs. 

For each of the three test catchments, the hydrographs of the rainfall, the observed discharge, 

and the discharge simulated by the best performing NNM model corresponding to the last 

water-year of the calibration period (i.e. the water-year at the middle of the data records used) 

are presented in Figs. 3, 4 and 5. It can be seen that the simulated discharge values in each 

Neurons in the input layer Station 
Code No. Total no. Type of input series 

No. of neurons in the 
hidden layer 

Total number of 
weights 

J2034010 9 nR:4, nE: , nS:1 3 34 
J3024010 3 nR:2, nS:1 3 16 
J4124420 5 nR:4, nS:1 5 36 
 nR = No. of Rainfall data; nE = No. of Evaporation data; nS = No. of outputs from SMARG 



 10

case match fairly well with the corresponding observed discharges for that year, both in low 

as well as high flow values. The ‘time to peak’ of the observed flows is also reproduced quite 

well. 

 

Table 5   R2 values in calibration (Rc
2) and verification (Rv

2) produced by MOCTs, and ranks 
 

J2034010 J3024010 J4124420
Combinations for MOCTs Rc

2 Rv
2 Rank Rc

2 Rv
2 Rank Rc

2 Rv
2 Rank

SAM 84.27 81.55  84.68 73.62  87.37 83.87  
WAM 94.05 92.14  92.73 88.62  93.55 94.24  All 7 

models NNM 96.00 86.27 1 93.51 83.54 2 94.86 90.59 1 
SAM 87.53 84.30  87.50 77.09  89.73 86.59  
WAM 93.98 92.20  92.62 88.76  93.55 94.27  Best 6 
NNM 95.15 86.39 2 93.40 84.62 3 94.28 90.81 2 
SAM 90.73 87.26  89.20 79.19  91.57 89.28  
WAM 92.51 91.23  92.00 88.11  93.41 93.64  Best 5 
NNM 93.41 85.89  93.53 84.77 1 94.19 88.30 3 
SAM 91.78 90.07  90.63 83.70  92.12 93.03  
WAM 92.60 91.17  91.76 88.79  93.00 93.76  Best 4 
NNM 94.16 87.04 3 92.32 86.80  92.68 90.01  
SAM 91.51 91.29  91.59 87.59  92.30 93.08  
WAM 92.63 91.58  91.88 89.13  92.99 93.70  Best 3 
NNM 92.88 86.66  91.62 86.41  93.15 93.34  
SAM 92.11 92.97  91.77 89.52  86.90 84.30  
WAM 92.71 92.04  91.88 89.24  87.79 82.30  Best 2 
NNM 92.89 87.48  92.87 87.56  91.61 88.35  

% improvement of the best 
MOCT over the best 

individual model (of Table 3)
4.5   3.6   5.0   

 

 
CONCLUSIONS AND RECOMMENDATIONS 
 
Amongst the individual substantive models, the performances of both forms of the naïve SLM 

(NP-SLM and P-SLM), which are very crude and simplified forms of the actual input-output 

transformation process, are found to be generally inferior to that of all other models tested.  

For these catchments, all characterized by substantial seasonality in the hydrological 

variables, both forms of the seasonally-based LPM (NP-LPM and P-LPM) significantly 

outperform the SLM model forms. For J4124420, the NP-LPM even outperforms the 
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SMARG conceptual model.  The SMARG conceptual model, which is intended to reflect the 

perceived dominant components of the physical process of flow generation in lumped form, 

generally performs better than the SLM and the LPM constructs. The performance of the 

wetness index based LVGFM, which utilizes SMARG as the auxiliary model for estimating 

the time-varying Gain Factor, is better than that of the SMARG, and hence better than the 

other four above-mentioned system-theoretic models.  The ANN structure, however, despite 

being non-parsimonious, performs significantly better than all other models tested on the 

three catchments owing to its complex but flexible non-linear formulation.  Thus, the 

superiority of the ANN models over the conceptual and other system-theoretic types of 

rainfall-runoff transformation models on these catchments is established. 
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Outputs from all basic rainfall-runoff models, used in different combinations in MOCTs, are 

useful for obtaining the best consensus simulation of the observed flows whereby strengths of 

individual models are combined and perceptible weaknesses are discarded.  In the case of the 

three test catchments, the simulated discharge obtained by such combination shows 

significant improvement, the performance of the NNM form of MOCT being the best. 

Fig. 3  Observed & simulated discharge & rainfall for the water year 1998-99 for J2034010 
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Thus, among the MOCTs, the NNM is found to be the most efficient, establishing the overall 

superiority of the neural network topology in both parts of this study. 

 In future studies, it is planned to carry out tests to obtain lead-time flow forecasts of the 

flows, both with and without updating components, by developing and applying models that 

exploit recent mathematical tools such as wavelets, capable of emphasising localized features, 

Fig. 5   Observed & simulated discharge & rainfall for the water year 1998-99 for J4124420 

Fig. 4   Observed & simulated discharge & rainfall for the water year 1998-99 for J3024010 
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e.g. spikes for flash floods etc., and the use of the NNM to combine radar precipitation 

estimates and raingauge data as inputs to semi-distributed catchment models. 
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