Análise de sensibilidade de parâmetros em modelagem de qualidade da água para estimativa de emissões de metano em aproveitamentos hidrelétricos aplicada à fase pré-enchimento

Sensitivity analysis of parameters in water quality modeling to estimate methane emissions from hydropower plants applied in the pre-impoundment phase

Juliano Lucas Souza de ABREU¹, Jorge Machado DAMÁZIO¹, José Paulo SOARES DE AZEVEDO²

¹ CEPEL — Centro de Pesquisas de Energia Elétrica, Rio de Janeiro, Brasil ² PEC/COPPE/UFRJ — Programa de Engenharia Civil, Universidade Federal do Rio de Janeiro, Brasil

RESUMO: Modelos de qualidade da água têm sido uma ferramenta bastante utilizada para a avaliação e previsão de resposta de interferências antropogênicas em recursos hídricos. Entretanto, em alagamentos artificiais, os prognósticos de emissões e remoções de gases de efeito estufa (GEE) para a atmosfera ainda incorporam grandes incertezas. O alto custo associado à necessidade de muitas medições e as estratégias para a calibração de modelos biogeoquímicos complexos representam um desafio. Neste contexto, a análise de sensibilidade dos parâmetros consiste em uma etapa importante para garantir o melhor usos de recursos computacionais e otimizar os esforços para a aquisição de dados de campo. Neste trabalho foi aplicado um modelo de qualidade da água 0D associado ao ciclo do carbono para a fase de pré-enchimento do aproveitamento hidrelétrico de SINOP, no estado do Mato Grosso, Brasil. Foi realizado um procedimento de análise de sensibilidade, em conjunto com o estabelecimento de critérios, para identificar parâmetros pouco significativos e auxiliar a seleção de parâmetros para calibração do modelo. Considerando a sazonalidade da região através de quatro campanhas realizadas na área de estudo, foram fixados 45% dos parâmetros por valores da literatura. Com o procedimento também foi possível verificar que alguns parâmetros se repetem entre os mais sensíveis para cada variável-estado. Assim, selecionando apenas 6 parâmetros para a calibração do dióxido de carbono (CO_2), e os 2 mais sensíveis para outras 4 variáveis estado do modelo.

Palavras-chave: modelagem de qualidade da água; gases de efeito estufa; hidroeletricidade

ABSTRACT: Water quality models have been widely used for assessment and response prediction in water resources from anthropogenic interferences. However, in the case of man-made impoundments, predictions of greenhouse gases (GHG) removals and emissions from and to the atmosphere still incorporate great uncertainties. The high costs due to the need of more field data and the strategies to calibrate complex biogeochemical models also represent a challenge. In this context, parameter sensitivity analysis become an important step to ensure the best use of computational resources and optimize the efforts to acquire field data. In this work, a OD carbon cycle water quality model was applied in the pre-impoundment phase of SINOP hydropower plant, in Mato Grosso state, in Brazil. A sensitivity analysis procedure was accomplished, followed by establishment of criteria, to identify unimportant parameters and to support parameter selection to model calibration. Regarding the seasonality of the region by four field campaigns executed in the study area, 45% of the total model parameters were fixed by literature values in the procedure. It was also emphasized that some parameters were recursively among the most sensitive for several state variables. Therefore, six parameters were chosen to the calibration, enabling the selection of the four most sensitives parameters to methane concentration (CH_4) in water, the most sensitive to carbon dioxide (CO_2), and the two most sensitives to other four state variables in the model.

Keywords: water quality modeling; greenhouse gases; hydroelectricity.

Este artigo é parte integrante da Revista Recursos Hídricos, Vol. 43, N.º 1, 23-36 março de 2022.

© APRH, ISSN 0870-1741 | DOI 10.5894/rh43n1-cti2

1. INTRODUÇÃO

No âmbito das discussões sobre os impactos de mudanças de uso do solo por alagamentos, a preocupação com os possíveis efeitos sobre as mudanças climáticas globais tem sido abordada desde o início dos anos de 1990. Estudos realizados na época apontam que a inundação de áreas continentais secas implica em interferência substancial nos fluxos de gases de efeito estufa (GEE) entre a superfície transformada e a atmosfera nestas áreas (Duchemin et al., 1995; Kelly et al., 1994; Rosa et al., 2004; Santos, 2000; St. Louis et al., 2000). A investigação dos fluxos de GEE nesta atividade ganhou atenção adicional devido à propensão de formação de zonas submersas com baixa concentração de oxigênio, favorecendo a geração do gás metano (CH₄), cujo potencial de aquecimento global é superior ao do dióxido de carbono (CO_2).

Ao longo dos anos 2000 prevaleceram discussões controversas e divergências entre metodologias de medição e análise de dados para realização de estimativas robustas do balanço líquido de emissões de GEE associadas aos alagamentos. Especificamente para a geração hidrelétrica, foram realizadas comparações entre as emissões de alguns aproveitamentos e as de usinas termelétricas movidas a carvão (Santos *et al.*, 2006; Fearnside, 2008; Rosa *et al.*, 2006; Svensson, 2005).

Esforços em nível nacional e internacional permitiram o desenvolvimento de diretrizes para realização de campanhas de campo, análise de dados e cálculo das emissões líquidas de GEE na área inundada e à jusante da barragem (BRASIL, 2014; EPRI, 2010; IEA/HYDRO, 2012; UNESCO/IHA, 2010). Acrescido também do aumento do número de medições, o impacto real dos alagamentos passou a ser melhor diagnosticado em termos de emissões de GEE.

Ainda assim, devido à variabilidade do fenômeno e à escala temporal necessária para uma avaliação eficaz dos fluxos de GEE, a busca pela redução das incertezas e melhora da previsibilidade das emissões líquidas em reservatórios de usinas hidrelétricas persiste. Acrescenta-se também a esta motivação a intensificação dos debates sobre a pluralidade de serviços da fonte renovável hídrica e a tendência global de transição para uma economia de baixo carbono.

Notoriamente, modelos de qualidade da água são ferramentas diversificadas que possuem muitas aplicações e que colaboram na previsibilidade de resposta a perturbações em ambientes aquáticos. A simulação de processos do ciclo do carbono

e das respectivas concentrações das formas de carbono presentes na água consiste em uma aplicação incorporada à subclasse de modelos biogeoquímicos. Dentre as dificuldades associadas a esta aplicação pode-se destacar a calibração dos parâmetros, que se torna mais desafiante à medida que se aumenta a complexidade do modelo, pois o custo para a aquisição de dados de campo é alto e muitas vezes existem limitações para a medição direta de alguns parâmetros (Chapra, 1997; Chaudhary et al., 2018). Em geral, a calibração é realizada através de comparações entre os resultados do modelo e medições. Uma técnica muito utilizada para a calibração de parâmetros em modelos hidrológicos tradicionais é o ajuste manual. No entanto, com a redução dos custos de processamento computacional nas últimas décadas, a calibração de parâmetros por métodos de otimização se torna cada vez mais freguente. Questões como a escolha do método de análise de sensibilidade, da função objetivo a ser minimizada, e do algoritmo de otimização a ser utilizado em cada aplicação, passaram a ganhar mais espaço na literatura (Chaudhary et al., 2018; Huo & Liu, 2019; Nakamura et al., 2019; Shoarinezhad et al., 2020).

No contexto dos reservatórios de hidrelétricas, algumas modelagens já foram realizadas no Brasil (Dias *et al.*, 2013; Mannich *et al.*, 2015), no entanto, em sua maioria são estudos em reservatórios maduros e sem uma avaliação das emissões locais já existentes antes do alagamento, chamadas de emissões de pré-enchimento.

Visando contribuir com os estudos para diagnósticos e prognósticos de emissões líquidas de GEE em aproveitamentos hidrelétricos, este trabalho apresenta uma análise de sensibilidade e a priorização de parâmetros para a calibração de um modelo de qualidade da água que estima os fluxos de GEE entre a água e a atmosfera, com ênfase no CH₄. A aplicação do mesmo foi realizada em um trecho de rio antes do alagamento pela implantação do aproveitamento hidrelétrico de SINOP, no estado do Mato Grasso, no Brasil, visando compreender as emissões de pré-enchimento. Para a estimativa dos fluxos, o modelo busca a representação dos principais processos que envolvem o ciclo do carbono no ambiente aquático lótico e as transferências entre os compartimentos adjacentes.

2. MATERIAIS E MÉTODOS

O modelo desenvolvido é do tipo 0D, ou seja, o sistema é idealizado como um reator homogêneo em que as concentrações na vazão de entrada se

Figura 1. Esquema conceitual criado para o modelo deste trabalho.

misturam completamente e instantaneamente, interagindo entre si, com os compartimentos vizinhos ar e sedimento, e saindo na vazão de saída nas mesmas concentrações do sistema. A vazão de entrada é constante e equivalente à vazão de saída, logo o volume do sistema permanece inalterado no período de modelagem.

Desenvolvido a partir de modificações do modelo CICLAR (Mannich *et al.*, 2015), a Figura 1 apresenta o esquema conceitual criado para o modelo deste trabalho.

O carbono na água foi dividido em 5 grupos de variáveis-estado: COD (carbono orgânico dissolvido), CID (carbono inorgânico dissolvido), COP_r (carbono orgânico fotossintetizante), COP_{NE} (carbono orgânico não-fotossintetizante) e CH₄. Dentro do CID, são calculadas as concentrações das 3 formas que compõem o sistema carbonato (CO₂, HCO₃- e CO₃-²) através do pH. No sedimento, o carbono é encontrado nas formas lábil e refratária, a degradação de ambas geram CH₄ e CO₂, que retornam para água na forma dissolvida, ou em bolhas no caso do metano. As emissões para a atmosfera são computadas pelos fluxos difusivo e ebulitivo de CH, e pelo fluxo difusivo de CO₂. Ademais, tanto na água quanto no sedimento foram criados sumidouros para permitir perdas de carbono para níveis tróficos superiores e sedimentação permanente, respectivamente.

A formulação matemática para o cálculo das variáveis-estado consiste em um sistema linear de primeira ordem de equações diferenciais ordinárias conforme apresentado na Tabela 1. Sendo Q as

vazões de entrada e de saída do sistema em m³.dia⁻¹, C as concentrações das variáveis-estado em mg.m⁻³ de carbono, $K \in PP$ (dia⁻¹) as taxas de transferência de massa entre as variáveis-estado de um mesmo compartimento, $F \in Vel * C$ os fluxos de massa (mg.m⁻².dia⁻¹) entre os compartimentos ar água e sedimento água, $A_{sup} \in A_{sed}$ as áreas (m²) de interface ar-água e água-sedimento, respectivamente, e V e V_{sed} os volumes (m³) de água e do sedimento no trecho modelado. Para validade das equações é necessário que ambos os volumes sejam constantes durante todo o período de modelagem.

Além das variáveis-estado, algumas das transferências foram detalhadas e modeladas por equações específicas, introduzindo novos parâmetros no modelo. Os fluxos difusivos de CH₄ e CO₂ na interface ar-água ($F_{CH_4}^{dif}$, $F_{CO_2}^{dif}$) são estimados em função da turbulência na camada limite líquida (Raymond et al., 2012) e das concentrações de cada gás em equilíbrio com a atmosfera (Weiss, 1974; Wiesenburg & Guinasso, 1979). Os fluxos difusivos de $\rm CH_{{\scriptscriptstyle A}}$ e CO, na interface sedimento-água $(F_{CH_{4sed}}^{dif}, F_{CO_{2sed}}^{dif})$ são obtidos através da modelagem da degradação do carbono no sedimento, com produção de metano em uma camada anaeróbica e posterior consumo em camada aeróbica, dada a concentração de oxigênio na superfície do sedimento (Di Toro et al., 1990). O fluxo ebulitivo é calculado em função do excesso de CH₄ produzido no sedimento que não foi degradado nem transportado por difusão, da altura média da coluna d'água e do raio inicial da bolha, em uma interpolação simplificada baseada na

modelagem em McGinnis *et al.* (2006). A fotossíntese do fitoplâncton (*PP*) também é modelada por equação específica na qual é computada a incidência de luz devido a variação da altitude solar (Cole & Wells, 2016; Mannich *et al.*, 2015; Rosman, 2018). Em paralelo ao modelo descrito, também é realizado um balanço térmico para alimentação dos parâmetros dependentes da temperatura da água. Nesse balanço são consideradas a incidência de radiação líquida de ondas curtas devido a variação da altitude solar e nebulosidade, a radiação atmosférica líquida de ondas longas, a radiação emitida pela água e o calor transmitido por condução e por evaporação (Chapra, 1997; Cole & Wells, 2016).

Após a finalização de toda a formulação matemática, o modelo atingiu o total de 51 parâmetros, alguns diretamente associados às transferências de carbono entre as variáveis-estado ou aos próprios fluxos para a atmosfera, outros associados ao modelo de balanço térmico ou à diagênese no sedimento. Antes de qualquer avaliação sobre a significância de cada parâmetro para os resultados das variáveis-estados do modelo, foram definidas faixas de valores permitidos para cada parâmetro e assumido um valor inicial provável de acordo com revisões na literatura, aplicações em outros modelos e visualização de gráficos após algumas rodadas preliminares. A Tabela 2 apresenta os parâmetros do modelo, os valores iniciais assumidos e o intervalo de valores permitidos para cada um. As referências para a escolha dos valores podem ser encontradas no anexo A1.

A implementação computacional pode ser descrita por 3 funções principais e algumas sub-rotinas: (i) função inicial em que são fornecidas as configurações de modelagem (período de simulação, condições iniciais e de contorno, parâmetros de calibração e seus respectivos valores, parâmetros fixados pelo valor de literatura) e é realizado o cálculo das constantes hidráulicas da simulação; (ii) solução do sistema de equações diferenciais por diferenças finitas com a execução de 4 sub-rotinas a cada passo de tempo: (ii-a) sub rotina de ajuste dos parâmetros pela temperatura, (ii-b) sub rotina do balanço térmico na superfície, (ii-c) cálculo das variáveis químicas e biológicas e (ii-d) a estimativa dos fluxos entre as interfaces ar água e sedimento água. Os valores obtidos pelas sub rotinas são inseridos nas equações diferenciais das variáveis-estado para o passo de tempo seguinte. (iii) após o fim da simulação é executada a função de saída dos resultados para a elaboração de gráficos. Maiores detalhes do desenvolvimento da modelagem podem ser vistos em Abreu (2021).

Tabela 1. Equações diferenciais das variáveis-estado	do modelo.
--	------------

Acumulação	Entrada	Saída	Reações de Produção de 1ª ordem	Reações de Consumo de 1ª ordem	Fluxos de Entrada entre compartimentos	Fluxos de Saída entre compartimentos
$\frac{dC_{COD}}{dt} =$	$+\frac{QC_{COD_E}}{V}$	$-\frac{QC_{COD}}{V}$	$+K_{CA}C_{COP_f}$ $+K_{DA}C_{COP_{nf}}$	$-K_{AH}C_{COD}$ $-K_{AB}C_{COD}$		
$\frac{dC_{COP_f}}{dt} =$	$+\frac{QC_{COP_{f_E}}}{V}$	$-\frac{QC_{COP_f}}{V}$	$+PP * C_{COP_f}$	$-K_{CA} C_{COP_f}$ $-K_{CB} C_{COP_f}$ $-K_{CD} C_{COP_f}$		$-\frac{Vel_s\;C_{COP_f}A_{sed}}{V}$
$\frac{dC_{COP_{nf}}}{dt} =$	$+\frac{QC_{COP_{nf_E}}}{V}$	$-\frac{QC_{COP_n}}{V}$	$+K_{CD}C_{COP_f}$	$-K_{DA}C_{COP_{nf}}$ $-K_{DB}C_{COP_{nf}}$ $-K_{DI}C_{COP_{nf}}$	$+\frac{Vel_{rs}C_{CS_{LAB}}A_{sed}}{V}$	$-\frac{Vel_s\;C_{COP_{nf}}A_{sed}}{V}$
$\frac{dC_{CID}}{dt} =$	$+\frac{QC_{CID_E}}{V}$	$-\frac{QC_{CID}}{V}$	$+K_{AB}C_{COD}$ $+K_{DB}C_{COP_{nf}}$ $+K_{HB}C_{CH_4}$ $+K_{CB}C_{COP_f}$	$-PP * C_{COP_f}$	$+\frac{F^{dif}_{CO_{2sed}}*A_{sed}}{V}$	$-\frac{F_{CO_2}^{dif} * A_{sup}}{V}$
$\frac{dC_{CH_4}}{dt} =$	$+\frac{QC_{CH_{4_{E}}}}{V}$	$-\frac{QC_{CH_4}}{V}$	$+K_{AH}C_{COD}$	$-K_{HB}C_{CH_4}$	$+\frac{F_{CH_{4sed}}^{dif}*A_{sed}}{V} \\ +\frac{F_{CH_{4botha}}^{dif}*A_{sed}}{V}$	$-\frac{F_{CH_4}^{dif} * A_{sup}}{V}$
$\frac{dC_{CS_{LAB}}}{dt} =$				$-K_{EF}C_{CS_{LAB}}$ $-K_{EG}C_{CS_{LAB}}$	$+ \frac{Vel_s \ C_{COP_f}A_{sed}}{V_{sed}} \\ + \frac{Vel_s \ C_{COP_nf}A_{sed}}{V_{sed}}$	$-\frac{Vel_{rs}C_{CSLAB}A_{sed}}{V_{sed}}$
$\frac{dC_{CS_{REF}}}{dt} =$			$+K_{EF}C_{CS_{LAB}}$	$-K_{FG}C_{CS_{REF}}$ $-K_{FI}C_{CS_{REF}}$		

26 Recursos Hídricos

Símbolo por Extenso	Nome	Valor provável assumido	Intervalo permitido	Unidade do Parâmetro
alfa0	Atenuação da luminosidade na coluna d'água (coef. 0)	0,0088	(0,007 – 0,01)	ad.
alfa1	Atenuação da luminosidade na coluna d'água (coef. 1)	0,054	(0,04 - 0,06)	ad.
atmCoefAten	Atenuação atmosférica de ondas longas	0.6	(0,45 – 0,75)	ad.
atmLongWaveRefl	Reflexão atmosférica de ondas longas	0,03	(0,027 – 0,033)	ad.
beta	Absorção de radiação na superfície da água	0,3	(0 – 0,5)	ad.
Comp_rio	Comprimento aparente do trecho de rio modelado	2,5e5	(2,45e5 – 2,60e5)	m
declivMedia	Declividade média aparente do trecho do rio modelado	2,5e-4	(1e-4 – 0,001)	m
gama	Percentual de luz visível da radiação incidente	0,5	(0,4 – 0,6)	ad.
Hmsed	Espessura média do sedimento ativo	0,1	(0,02 - 0,3)	m
ls	Radiação de máxima fotossíntese	140	(95 - 170)	W.m ⁻²
kab20graus	Taxa de mineralização do COD (20°C)	0,05	(0,02 - 0,3)	dia ⁻¹
kah20graus	Taxa de metanogênese na coluna d'água (20°C)	1e-4	(0 – 2,4)	dia ⁻¹
kc20graus	Taxa de oxidação do metano dissolvido na zona aeróbica do sedimento (20°C)	1200	(1000 – 1e4)	dia ⁻¹
kca20graus	Taxa de excreção do fitoplâncton (20°C)	0,005	(0,005 - 0,8)	dia-1
kcb20graus	Taxa de respiração do fitoplâncton (20°C)	0,1	(0,005 - 0,8)	dia ⁻¹
kcd20graus	Taxa de predação + morte do fitoplâncton (20°C)	0,05	(0,003 – 1)	dia-1
kco2	Constante de meia saturação do CO2 na água	700	(500 - 1800)	mgC.m⁻³
kda20graus	Taxa de decomposição dos detritos + excreção do zooplâncton (20°C)	0,1	(0,015 - 0,164)	dia ⁻¹
kdb20graus	Taxa de respiração do zooplâncton + mineralização dos detritos (20°C)	0,01	(0,001 – 0,126)	dia-1
kdi20graus	Taxa de perda do zooplâncton por predação + decaimento dos detritos (20°C)	0,001	(1e-5 – 0,01)	dia-1
kef20graus	Taxa de decaimento do carbono lábil para carbono refratário (20°C)	0,002	(0,001 – 0,015)	dia ⁻¹
keg20graus	Taxa de degradação anaeróbica do carbono lábil no sedimento (20°C)	0,003	(0,0018 – 0,05)	dia-1
kfg20graus	Taxa de degradação anaeróbica do carbono refratário no sedimento (20°C)	7,5e-5	(2,5e-6 – 1e-4)	dia-1
kfi20graus	Taxa de decaimento do carbono refratário por sedimentação permanente (20°C)	0,002	(0-0,01)	dia ⁻¹
khb20graus	Taxa de metanotrofia na coluna d'água (20°C)	0,1	(0,01 - 5)	dia-1
kn20graus	Taxa de oxidação do íon amônio dissolvido na zona aeróbica do sedimento (20°C)	2200	(1000 – 1e4)	dia-1
kp20graus	Taxa de fotossíntese máxima (20°C)	3	(0,2 - 8)	dia-1
nuvens	Porcentagem de horas do dia, em média, com nuvens	0,3	(0 – 0,7)	ad.
pch4ar	Pressão parcial de metano na atmosfera	1,84e-6	(1,6e-6 - 2,1e-6)	atm
pco2ar	Pressão parcial de dióxido de carbono na atmosfera	4e-4	(3e-4 - 5e-4)	atm
R_iniBolha	Raio inicial médio das bolhas de metano ao sair do sedimento	0,0055	(0,001 - 0,01)	М
theta_CChla	Razão média entre massa de carbono e clorofila a na biomassa fitoplanctônica	55	(10 - 100)	ad.
theta_NC	Razão estequiométrica média entre o nitrogênio e carbono na matéria orgânica	0,1509	(0,05 - 0,43)	ad.
thetakab	Coeficiente de temperatura da mineralização	1,08	(1,02 – 1,09)	ad
thetakah	Coeficiente de temperatura da metanogênese	1,08	(1,02 – 1,09)	ad
thetakca	Coeficiente de temperatura da excreção do fito	1,08	(1,02 – 1,09)	ad
thetakcb	Coeficiente de temperatura da respiração do fito	1,08	(1,02 – 1,09)	ad
thetakcd	Coeficiente de temperatura da predação + morte do fito	1,08	(1,02 – 1,09)	ad
thetakda	Coeficiente de temperatura da decomposição dos detritos	1,08	(1,02 – 1,09)	ad
thetakdb	Coeficiente de temperatura da resp. zoo + decom. detritos	1,08	(1,02 – 1,09)	ad
thetakdi	Coeficiente de temperatura do decaim. dos detrit. + zoo	1,08	(1,02 - 1,09)	ad.
thetakef	Coeficiente de temperatura do decaimento do C lábil	1,08	(1,02 – 1,09)	ad
thetakeg	Coeficiente de temperatura da degrad. do C lábil no sed.	1,1	(1,01 – 1,20)	ad
thetakfg	Coeficiente de temperatura da degrad. do C refrat. no sed.	1,15	(1,01 – 1,20)	ad
thetakhb	Coeficiente de temperatura da metanotrofia na água	1,08	(1,02 – 1,09)	ad
thetakp	Coeficiente de temperatura da fotossíntese	1,066	(1,01 – 1,20)	ad
Tr_Ssed	Trecho do perímetro molhado da seção do rio em que não há deposição de sedimentos	100	(0 - 225)	m
UR	Umidade relativa média do ar	0,65	(0,5 – 0,75)	ad.
velMpar	Coeficiente de ajuste da velocidade média em função da vazão do rio	1	(0,01 – 3)	ad.
Velrs	Velocidade de ressuspensão de sedimentos	0,01	(0 - 2)	m.dia ⁻¹
Vels	Velocidade de sedimentação	10	(0 - 30)	m.dia ⁻¹

Tabela 2. Parâmetros avaliados na análise de sensibilidade.

ct&i

Recursos Hídricos 27

2.1 Área de Estudo

O modelo foi aplicado na área de corpos hídricos da região a ser alagada pela implantação do aproveitamento hidrelétrico de SINOP, este em fase de construção durante as campanhas de medição realizadas. Logo, a aplicação consistiu em uma análise de sensibilidade para uma modelagem das estimativas de emissões de pré-enchimento na região da UHE SINOP.

A UHE SINOP está localizada no curso médio alto do rio Teles Pires, no estado do Mato Grosso, cuja bacia hidrográfica possui área de aproximadamente 150.000 km², sendo 61.430 km² a montante da barragem. O rio transita entre os biomas cerrado e amazônico, com predomínio do amazônico na área de inundação. A estação chuvosa na região começa em novembro e dura até o início de abril enquanto a estação seca ocorre entre abril e outubro. A precipitação média mensal varia entre 5,6 e 320,7 mm e a temperatura média mensal varia entre 21,9 e 25,0°C ao longo do ano. A área de corpos hídricos modelada corresponde a aproximadamente 57,12 km² dos 342,82 km² da área máxima de inundação do reservatório e é composta por solos alagados, brejos, calha do rio, lagoas intermitentes e lagoas perenes. A Figura 2 apresenta a área modelada e a malha amostral da coleta de dados. Nos pontos classificados como "câmara de difusão" foram medidos valores de fluxos difusivos de CH₄ e CO₂ na interface ar-água, além da concentração de CH₄, CO₂, COD, COP e clorofila-a na água. Nos pontos de "funil" foram realizadas medições dos fluxos ebulitivos de CH₄ e CO₂ na interface ar-água e nos pontos de "amostra de sedimentos" foram medidos os fluxos difusivos destes gases na interface sedimento-água, assim como o oxigênio dissolvido, a matéria orgânica lábil e refratária no sedimento. As temperaturas da água e do ar e o pH na água foram medidos em todos os pontos.

Quatro campanhas de campo espaçadas ao longo do ano foram realizadas entre novembro

Figura 2. Malha amostral das campanhas realizadas no aproveitamento.

de 2017 e setembro de 2018. As medições foram feitas pelo Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa em Engenharia (COPPE/ UFRJ) e pelo Instituto Internacional de Ecologia e Gerenciamento Ambiental (IIEGA). A Tabela 3 descreve o cronograma das campanhas de campo realizadas por cada uma das instituições.

Campanha	Instituição	Data início	Data Término
	IIEGA	09/11/2017	10/11/2017
1ª Campanna	COPPE	27/11/2017	02/12/2017
2ª Campanha	IIEGA	21/02/2018	22/02/2018
	COPPE	26/02/2018	03/03/2018
3ª Campanha	IIEGA	20/06/2018	21/06/2018
	COPPE	25/06/2018	30/06/2018
4ª Campanha	IIEGA	20/09/2018	21/09/2018
	COPPE	24/09/2018	29/09/2018

Tabela 3. Cronograma de campanhas executado.

ANÁLISE DE SENSIBILIDADE

A análise de sensibilidade foi realizada com a intenção de fixar parâmetros menos sensíveis em valores obtidos na literatura, identificar parâmetros que são possivelmente melhor calibrados com medições específicas e selecionar um número reduzido de parâmetros para calibração na simulação. Foi avaliada a interferência dos parâmetros nas variáveis-estado e nas transferências calculadas explicitamente, como os fluxos intercompartimentais. Foram estabelecidos critérios, segmentados em mais de uma etapa, para a fixação e seleção de parâmetros. Na análise de sensibilidade optou-se por uma variação do método One at a Time (OAT), descrito em Yuan et al. (2015). Foi configurada uma rotina de execuções sucessivas do modelo em que, na primeira execução, os parâmetros estão todos com os seus valores iniciais assumidos e, em seguida, cada parâmetro é alterado isoladamente para o seu valor máximo e depois para seu valor mínimo, enquanto os demais permanecem em seu valor inicial. Assim, houve 103 execuções para cada campanha, totalizando 412 rodadas do modelo. Para permitir uma avaliação consistente da interferência dos parâmetros, cada execução foi realizada com as condições de contorno constantes relativa a cada campanha e condições iniciais em equilíbrio com as condições de contorno da campanha e com os parâmetros em seus valores iniciais assumidos. Foi adotado o período de simulação de 365 dias, pois o mesmo se mostrou mais do que o necessário para a estabilização das variáveis-estado na água e o suficiente para estabilização das variáveis-estado do sedimento na maioria das rodadas preliminares. Com os resultados das variáveis-estado foram criadas três matrizes para avaliação da sensibilidade em cada campanha. As colunas estando associadas às variáveis-estado, ou fluxos do modelo, e as linhas associadas aos parâmetros.

A primeira matriz, denominada matriz de relevância (MR) foi utilizada com caráter eliminatório no sentido de identificar parâmetros pouco significativos e que podem ser fixados por valores de literatura sem avaliação das demais matrizes. Para criar uma relação de significância na calibração da campanha, a MR foi composta pela razão dos coeficientes de variação (CV) de cada variável em relação a variação de cada parâmetro pelos CVs dos dados de calibração medidos para cada variável na respectiva campanha. Por esta análise, foram fixados os parâmetros em que a interferência nos CVs das variáveis não alcançou, na média das campanhas, 75% dos CVs das medições de calibração em pelo menos uma das variáveis-estado ou fluxos do modelo.

A segunda matriz de avaliação correspondeu a uma variação da análise de sensibilidade mais comum na literatura, a sensibilidade relativa (Yuan et al., 2015). É utilizada para avaliação da incerteza dos resultados do modelo dada a variação do parâmetro. A variação utilizada neste trabalho, denominada matriz de sensibilidade relativa (MSR), foi obtida pela razão dos CVs de cada variável em relação a variação de cada parâmetro pelo CV do parâmetro considerando o valor inicial assumido e as extremidades dos valores permitidos. O objetivo da MSR foi destacar parâmetros sensíveis e que necessitam de maior precisão. No entanto, a MSR não evidenciava parâmetros importantes, mas que não necessitam de muita precisão por apresentar um intervalo de valores permitidos muito alto.

Para reduzir este problema e auxiliar a priorização de parâmetros foi utilizada a terceira matriz, denominada matriz dos coeficientes de variação totais (*MCVT*). A *MCVT* é composta pela razão dos *CV*s de cada variável em relação a variação de cada parâmetro pelo *CV* total da variável, considerando todas as variações dos parâmetros. Também foi utilizada uma análise em conjunto da *MSR* e da *MCVT*, que buscou juntar as avaliações de cada matriz e identificar prioridades na escolha dos parâmetros para serem fixados. Para reunir as informações das duas matrizes, cada linha da *MSR* e cada coluna da *MCVT* foram divididas pelo seu valor máximo. Em seguida somou-se os valores para

obter uma ordenação de parâmetros considerando a análise em conjunto (*MSR*+*MCVT*).

$$MR_{ij} = \frac{CV_{i,j}}{CV_{dados_j}} \qquad MSR_{ij} = \frac{CV_{i,j}}{CV_{par_i}} \qquad MCTV_{ij} = \frac{CV_{i,j}}{CV_{N_{par,j}}}$$
$$com \quad 0 < i \le N_{par} \quad e \quad 0 < j \le N_{var}$$

Sendo CV_{ij} o coeficiente de variação da variável j dada a variação do parâmetro i; CV_{dados_j} o coeficiente de variação dos dados de calibração relativos à variável j; CV_{par_i} o coeficiente de variação do parâmetro i, considerando o valor inicial assumido e as extremidades dos valores permitidos; $CV_{N_{par,j}}$ o coeficiente de variação da variável j dada a variação de todos os parâmetros; N_{par} é o número total de parâmetros analisados e N_{var} é número total de variáveis-estado ou fluxos analisados.

Um procedimento importante utilizado entre as etapas da análise de sensibilidade é que após a avaliação pela primeira matriz (MR), foram eliminados os parâmetros não significativos e também foram retirados os parâmetros que poderiam ser melhor calibrados através de medições específicas. A calibração de funções por medições específicas (sem a simulação) visou à obtenção de ajustes mais realistas, por meio do isolamento da variabilidade de alguns processos das demais incertezas associadas à própria simulação. Na seleção destes parâmetros foi necessário analisar alguns critérios a fim de evitar que uma calibração separada prejudicasse a calibração a ser realizada na simulação. Parâmetros com interferência em diversos processos modelados não foram selecionados. Em seguida, as avaliações pela MSR, pela MCVT e MSR+MCVT foram realizadas apenas com os parâmetros restantes.

3. RESULTADOS E DISCUSSÃO

Inicialmente foi realizada a rodada de testes com as concentrações iniciais iguais a zero para verificação da estabilidade e do balanço de massas do modelo. A Figura 3 apresenta os resultados de uma rodada do modelo em termos de concentração de metano na água, carbono no sedimento e o balanço de carbono, com condições iniciais próximas à zero, utilizando as condições de contorno para a 4ª campanha (estiagem) e parâmetros fixados nos valores iniciais assumidos.

A evolução das concentrações e do balanço entre as entradas e as saídas de carbono do sistema indica uma consistência na implementação da formulação matemática do modelo e revela o comportamento das variáveis-estado até sua estabilização na respectiva campanha.

Pelos critérios estabelecidos para a análise com a Matriz de Relevância foram fixados 23 parâmetros dos 51 avaliados (45%). Entre os 28 restantes, considerados significativos para a aplicação, 12 foram selecionados para calibrar processos separadamente, utilizando medições específicas, sendo: 3 para calibrar separadamente o modelo de temperatura (*UR*, *atmCoefAten* e *nuvens*); 2 para calibrar a turbulência na interface ar-água para obtenção dos fluxos difusivos a partir das concentrações dos gases na água (*velMpar* e \overline{dec}); e 7 foram selecionados para calibrar os processos no sedimento e obter os fluxos difusivos de CH₄ e CO₂ para água e o fluxo ebulitivo de CH₄ para a atmosfera ($K_{eg20^{\circ}}$, θ_{keg} , \overline{H}_{sed} , \overline{Tr}_{Ssed} , $K_{C00^{\circ}}$, $\theta_{NC} \in \overline{\tau}_{Ibolhas}$).

Após as fixações e as seleções de parâmetros para a calibração por medições específicas restaram 16 parâmetros (31%) a serem avaliados pelas demais matrizes. A Tabela 4 apresenta tais parâmetros ordenados por nível de sensibilidade em relação à concentração de metano na água segundo a *MSR*, a *MCVT* e a avaliação conjunta das duas, considerando as 4 campanhas. Embora o objetivo do modelo seja obter os fluxos de metano para a atmosfera, a variável-estado de concentração de metano na água foi utilizada nestas avaliações tendo em vista que a sua variabilidade, assim como de suas medições, é bem menor do que a variabilidade dos fluxos e de suas medições.

Observando o resultado da *MSR*, o parâmetro mais sensível para a concentração de metano foi o coeficiente de temperatura da fotossíntese (θ_{kp}), seguido da metanogênese na água ($K_{ah20^{\circ}}$). Como a *MSR* não identifica a magnitude de interferência em relação aos outros parâmetros, o resultado da *MCVT* consegue avaliar melhor esta relação e coloca $K_{ah20^{\circ}}$ e *Vel*_{RS°} como os dois parâmetros mais sensíveis para a concentração de metano. Na avaliação em conjunto, os 5 parâmetros mais sensíveis em relação à concentração de metano foram o $K_{ah20^{\circ}}$, $K_{hb20^{\circ}}$, $Vel_{RS^{\circ}}$, $Kp_{20^{\circ}} e \theta_{kp}$.

Ainda foi avaliada a sensibilidade dos parâmetros para outras variáveis-estado, dada a interdependência entre as variáveis e, principalmente, para o carbono lábil no sedimento que tem forte implicação nos fluxos ebulitivos de metano. Uma análise da Tabela 5 evidencia como alguns parâmetros são reincidentes nas primeiras colocações das listas de sensibilidade para cada variável-estado, segundo o critério de avaliação conjunta (*MSR*+*MCVT*) adotado neste trabalho.

Tendo em vista o resultado das sensibilidades e o reconhecimento da importância das interrelações entre as variáveis-estado, optou-se pela priorização dos 4 parâmetros mais sensíveis para a concentração de metano, os dois mais sensíveis para o $CS_{LAB'}$ o COD, o $COP_{P'}$ o COP_{NF} e o mais sensível para o CID, logo, para o CO_2 . Correspondendo a um total de 6 parâmetros, foram priorizados para calibração o $K_{ab20^{o}}$, $K_{bb20^{o}}$, $Vel_{RS'}$, $Vel_{S'}$, $Kp_{20^{o}}$ e o $K_{ab20^{o}}$.

3

Figura 3. Rodada de teste para verificação do balanço.

Tabela 4.	Resultados	das	sensibilidades	obtidas	para	а
concentra	ção de CH4	na á	gua.			

Tabela 5. Maiores sensibilidades p	oara as o	demais
variáveis-estado.		

Avaliação MSR		Avaliação MCVT		Avaliação Conjunta	
thetakp	36,66	kah20graus	1,51	kah20graus	2
kah20graus	3,91	Velrs	0,99	khb20graus	1,52
kp20graus	3,35	kp20graus	0,79	Velrs	1,48
Velrs	2,56	khb20graus	0,79	kp20graus	1,26
Vels	2,42	thetakp	0,74	thetakp	1,23
khb20graus	2,11	Vels	0,62	kco2	0,87
ls	2,09	kcb20graus	0,42	kcb20graus	0,86
kco2	1,85	theta_CChla	0,33	kab20graus	0,86
theta_CChla	1,78	kcd20graus	0,32	Vels	0,85
kda20graus	1,58	kca20graus	0,32	kda20graus	0,82
kcb20graus	1,28	kef20graus	0,3	ls	0,79
kab20graus	1,15	kco2	0,3	theta_CChla	0,76
kef20graus	0,93	kab20graus	0,29	kca20graus	0,72
kcd20graus	0,87	kda20graus	0,25	kcd20graus	0,67
kca20graus	0,81	ls	0,24	kef20graus	0,55
kfi20graus	0,09	kfi20graus	0,03	kfi20graus	0,06

Variável-estado	Avaliação Conjunta (MSR + MCVT)			
CClah	Velrs	1,86		
CSIAD	Vels	1,39		
COD	kab20graus	1,57		
COD	khb20graus	1,47		
COPf	Vels	2		
	kp20graus	1,74		
60D (kp20graus	1,53		
COPhr	Velrs	1,45		
	kp20graus	1,23		
CID	thetakp	1,16		
CErcf	kef20graus	2		
CSret	kfi20graus	1,8		

4. CONCLUSÃO

O desenvolvimento e a calibração de modelos para diagnósticos e prognósticos de emissões e remoções de GEE em alagamentos artificiais tem se apresentado como uma ferramenta interessante para a avaliação e auxílio na tomada de decisão para a mitigação das emissões de aproveitamentos hidrelétricos existentes e a serem construídos. Embora ainda incorporem grandes incertezas, a intensificação de medições em campo e o avanço da tecnologia representam grandes aliados para o constante aprimoramento da precisão e da acurácia dos resultados.

A partir da análise de sensibilidade, foi possível identificar que 45% dos parâmetros era pouco significativo para o resultado do modelo. Quanto à interferência na concentração de metano na água, de acordo com a análise pela matriz de sensibilidade relativa, os parâmetros que necessitam de maior precisão são o coeficiente de temperatura da fotossíntese (θ_{kn}) e a metanogênese na água (K_{ab20°). No caso da avaliação pela matriz de coeficientes de variação totais, além de K_{ab20° , a velocidade de ressuspensão dos sedimentos (Vel_{RS°}) também é bastante sensível. Pela análise em conjunto da MSR+MCVT, foi evidenciado que alguns parâmetros se repetem entre os mais sensíveis para cada variável-estado do modelo. Assim, com a escolha de apenas 6 parâmetros para a calibração ($K_{hb20^{\circ}}$, $Vel_{RS^{\circ}}$, $Vel_{S^{\circ}}$, $Kp_{20^{\circ}}$, e $K_{ab20^{\circ}}$), foi possível eleger os 4 parâmetros mais sensíveis para a concentração de metano, o mais sensível para a concentração de CO₂, e os 2 mais sensíveis para outras 4 variáveis-estado.

5. REFERÊNCIAS

Abreu, J. L. S. (2021). Estimativas de Emissão de Metano em Aproveitamentos Hidrelétricos: Desenvolvimento e Calibração de Modelo OD Aplicado à Situação de Pré-Enchimento. Rio de Janeiro: UFRJ/ COPPE."

BRASIL/MME. (2014). *Emissões de Gases de Efeito Estufa em Reservatórios de Centrais Hidrelétricas*. Brasil, Ministerio de Minas e Energia.

Chapra, S. C. (1997). Surface Water-Quality Modeling. In *McGraw-Hill Series in Water Resources and Environmental Engineering*.

Chaudhary, S., Dhanya, C. T., & Kumar, A. (2018). Sequential calibration of a water quality model using reach-specific parameter estimates. *Hydrology Research*, *49*(4), 1042–1055. https://doi.org/10.2166/nh.2017.246 Cole, T. M., & Wells, S. A. (2016). *CE-QUAL-W2: A Two-Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, Version 4.0 User Manual* (Issue June). Portland State University.

Di Toro, D. M., Paquin, P. R., Subburamu, K., & Gruber, D. A. (1990). Sediment Oxygen Demand Model: Methane and Ammonia Oxidation. *Journal of Environmental Engineering*, *116*(5), 945–986. https:// doi.org/10.1061/(ASCE)0733-9372(1990)116:5(945)

Dias, N. L., Gobbi, M. F., Augusto, F., Armani, S., & Hoeltgebaum, L. E. (2013). *Projeto ELGEE / BALCAR* — *Relatório de Atividades até Maio de 2013 1 Medições micrometeorológicas de Itaipu*.

Dos Santos, Marco Aurelio, Rosa, L. P., Sikar, B., Sikar, E., & dos Santos, E. O. (2006). Gross greenhouse gas fluxes from hydro-power reservoir compared to thermo-power plants. *Energy Policy*, *34*(4), 481–488. https://doi.org/10.1016/j.enpol.2004.06.015

Duchemin, E., Lucotte, M., Canuel, R., & Chamberland, A. (1995). Production of the greenhouse gases CH4 and CO2 by hydroelectric reservoirs of the boreal region. *Global Biogeochemical Cycles*, *9*(4), 529–540. https://doi.org/10.1029/95GB02202

EPRI. (2010). The Role of Hydropower Reservoirs in Greenhouse Gas Emissions.

Fearnside, P. M. (2008). Hidrelétricas Como "Fábricas De Metano": O Papel Dos Reservatórios Em Áreas De Floresta Tropical Na Emissão De Gases De Efeito Estufa. *Oecologia Australis*, *12*(01), 100–105. https:// doi.org/10.4257/oeco.2008.1201.10

Huo, J., & Liu, L. (2019). Application research of multi-objective Artificial Bee Colony optimization algorithm for parameters calibration of hydrological model. *Neural Computing and Applications*, *31*(9), 4715–4732. https://doi.org/10.1007/s00521-018-3483-4

IEA/HYDRO. (2012). Guidelines for Quantitative Analysis of Net GHG Emissions from Reservoirs - Volume 1 – Measurement Programs and Data Analysis.

Kelly, C. A., Rudd, J. W. M., St. Louis, V. L., & Moore, T. (1994). Turning attention to reservoir surfaces, a neglected area in greenhouse studies. *Eos, Transactions American Geophysical Union*, *75*(29), 332–333. https://doi.org/10.1029/94EO00987

Mannich, M., Resende, J. F., Fernandes, C. V. S., Bernardo, J. W. Y., Zahn, E., & Bleninger, T. B. (2015).

CICLAR : Modelo 0D para Dinâmica de Carbono em Lagos e Reservatórios. *Revista Brasileira de Recursos Hídricos, 20*(1), 237–248. https://doi.org/10.21168/ rbrh.v20n1.p237-248

McGinnis, D. F., Greinert, J., Artemov, Y., Beaubien, S. E., & Wüest, A. (2006). Fate of rising methane bubbles in stratified waters: How much methane reaches the atmosphere? *Journal of Geophysical Research: Oceans, 111*(9), 1–15. https://doi.org/10.1029/2005JC003183

Nakamura, C. H., Salla, M. R., Oliveira de Jesus, J. A., & Ribeiro da Silva, G. H. (2019). Calibration of mathematical water quality modeling in a river basin under critical conditions. *Water Environment Research*, *91*(12), 1678–1691. https://doi.org/10.1002/wer.1175

Raymond, P. A., Zappa, C. J., Butman, D., Bott, T. L., Potter, J., Mulholland, P., Laursen, A. E., McDowell, W. H., & Newbold, D. (2012). Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. *Limnology and Oceanography: Fluids and Environments*, *2*(1), 41–53. https://doi. org/10.1215/21573689-1597669

Rosa, L. P., Santos, M. A., Matvienko, B., Santos, E. O., & Sikar, E. (2004). Greenhouse Gas Emissions from Hydroelectric Reservoirs in Tropical Regions. *Climatic Change*, *66*, 9–21. https://doi.org/10.1023/B:CLIM.0000043158.52222.ee

Rosa, L. P., Sikar, B. M., Santos, M. A. Dos, & Sikar, E. M. (2006). Emissões de Dióxido de Carbono e de Metano pelos Reservatórios Hidrelétricos Brasileiros. *Ministério Da Ciência e Tecnologia*, 118. http://livroaberto.ibict.br/bitstream/1/730/2/ emissoes de dioxido de carbono e de metano pelos reservatorios hidreletrcos brasileiros.pdf

Rosman, P. C. C. (2018). *Referência Técnica do Sisbahia*[®] (pp. 1–397). PENO - COPPE/ UFRJ.

Santos, Marco Aurélio. (2000). *Inventário de Emissões de Gases de Efeito Estufa Derivadas de Hidrelétricas*. Universidade Federal do Rio de Janeiro.

Shoarinezhad, V., Wieprecht, S., & Haun, S. (2020). Comparison of Local and Global Optimization Methods for Calibration of a 3D Morphodynamic Model of a Curved Channel. *Water (Switzerland)*, *12*(1333), 1–17. https://doi.org/10.3390/W12051333

St. Louis, V. L., Kelly, C. A., Duchemin, É., Rudd, J. W. M., & Rosenberg, D. M. (2000). Reservoir Surfaces as Sources of Greenhouse Gases to the Atmosphere: A Global Estimate. *BioScience*, *50*(9), 766–775. https://doi.org/10.1641/0006-3568(2000)050[0766:RSASO G]2.0.CO;2

Svensson, B. (2005). Greenhouse gas emissions from hydroelectric reservoirs: A global perspective. *Dos Santos and Rosa (Eds.), August,* 25–37. http://www. rheoconsult.com/Exp/Rio2005.pdf

UNESCO/IHA. (2010). GHG measurement guidelines for freshwater reservoirs : derived from: The UNESCO/ IHA Greenhouse Gas Emissions from Freshwater Reservoirs Research Project / general ed.: Joel A. Goldenfum.

Weiss, R. F. (1974). Carbon Dioxide in Water and Seawater: The Solubility of a Non-Ideal Gas. *Marine Chemistry*, *2*, 203–2015.

Wiesenburg, D. A., & Guinasso, N. L. (1979). Equilibrium Solubilities of Methane, Carbon Monoxide, and Hydrogen in Water and Sea Water. *Journal of Chemical and Engineering Data*, *24*(4), 356–360. https://doi.org/10.1021/je60083a006

Yuan, Y., Khare, Y., Wang, X., Parajuli, P. B., Kisekka, I., & Finsterle, S. (2015). Hydrologic and water quality models: Sensitivity. *American Society of Agricultural and Biological Engineers*, *58*(6), 1721–1744. https:// doi.org/10.13031/trans.58.10611

6. ANEXOS

A1 Referências para escolha dos valores assumidos e faixa de valores permitidos para cada parâmetro

Símbolo por extenso	Nome	Referência/método de estimativa do valor assumido	Referência/método de estimativa do intervalo permitido (min/max)
alfa0	Atenuação da luminosidade na coluna d'água (coef. 0)	Riley (1956) apud Rosman (2018)	desvio de 20% em relação ao valor assumido
alfa1	Atenuação da luminosidade na coluna d'água (coef. 1)	Riley (1956) apud Rosman (2018)	desvio de 20% em relação ao valor assumido
atmCoefAten	Atenuação atmosférica de ondas longas	visualização gráfica da temperatura nas rodadas preliminares	Edinger <i>et al</i> (1974)
atmLongWaveRefl	Reflexão atmosférica de ondas longas	Chapra (1997)	desvio de 10% em relação ao valor assumido
beta	Absorção de radiação na superfície da água	Cole and Wells (2016)	Cole and Wells (2016)
comp_rio	Comprimento aparente do trecho de rio modelado	Área de recursos hídricos de acordo com o Inventário Florestal Complementar do Reservatório da UHE SINOP	5% de erro máximo da área de recursos hídricos considerando os níveis d'água máximo e mínimo das campanhas
declivMedia	Declividade média aparente do trecho do rio modelado	Altura da barragem dividida pelo comprimento total de rio no trecho	intervalo de uma ordem de grandeza ao qual se encontra o valor assumido
gama	Percentual de luz visível da radiação incidente	Rosman (2018)	Rosman (2018)
Hmsed	Espessura média do sedimento ativo	recomendada em Di Toro (1990)	medição IIEGA / Di Toro (1990)
ls	Radiação de máxima fotossíntese	valor hipotético próximo à média do intervalo permitido	Bowie <i>et al.</i> (1985) table 6.8 p320
kab20graus	Taxa de mineralização do COD (20°C)	Chapra (1997)	valores de Qi <i>et al.</i> (2020), considerando uma composição de 60% DOCrefrat e 40% DOClabil para o mínimo e 100% DOClabil para o máximo
kah20graus	Taxa de metanogênese na coluna d'água (20°C)	escolhido por visualização gráfica da concentração de metano nas rodadas preliminares	Bogard (2014)
kc20graus	Taxa de oxidação do metano dissolvido na zona aeróbica do sedimento (20°C)	Di Toro (1990)	Chapra (1997) p476
kca20graus	Taxa de excreção do fitoplâncton (20°C)	foi escolhido o valor mínimo do intervalo por visualização gráfica do COD e do COPf.	normalmente modelado junto com kcb e portanto foi utilizado o mesmo intervalo segundo Bowie (1985) p346
kcb20graus	Taxa de respiração do fitoplâncton (20°C)	80% do valor médio usual para (kca+kcb) sugerido em Rosman (2018)	normalmente modelado junto com kcb e portanto foi utilizado o mesmo intervalo segundo Bowie (1985) p346
kcd20graus	Taxa de predação + morte do fitoplâncton (20°C)	valor escolhido por visualização gráfica da concentração de COPf e COPnf nas rodadas preliminares	valor mínimo considera apenas mortalidade Bowie (1985) / valor máximo soma máxima mortalidade com máxima predação Chapra (1997) considerando biomassa máxima de zoo (10% do maior COPnf medido)
kco2	Constante de meia saturação do CO2 na água	Chen <i>et al</i> (1975) apud Zeng <i>et al.</i> (2006)	Mannich (2015)
kda20graus	Taxa de decomposição dos detritos + excreção do zooplâncton (20°C)	valor escolhido por visualização gráfica da concentração de COPnf e COD	excr. zoo (0,001-0,36) Bowie (1985); dissol. detrito refrat (0,0025-0,01) Qi <i>et</i> <i>al</i> , (2020); detrito lábil (0,0375-0,15) Qi <i>et al</i> . (2020). valor mínimo considera COPnf composto por 10%zoo 55%detrito refrat e 35%detrito labil / valor máximo considera 10%zoo 10%detrito refrat e 80%detrito lábil

Análise de sensibilidade de parâmetros em modelagem de qualidade da água...

Símbolo por extenso	Nome	Referência/método de estimativa do valor assumido	Referência/método de estimativa do intervalo permitido (min/max)
kdb20graus	Taxa de respiração do zooplâncton + mineralização dos detritos (20°C)	valor escolhido por visualização gráfica da concentração de COPnf e CID	resp. zoo (0,001-0,36) Bowie (1985) mineral. detrito (0,001-0,1) Qi <i>et al.</i> (2020). Valor mínimo considera a taxa mínima de ambos processos / valor máximo considera uma composição máxima de 10%zoo
kdi 20 graus	Taxa de perda do zooplâncton por predação + decaimento dos detritos (20°C)	valor médio usual de predação do zoo segundo Rosman (2018) considerando uma composição do COPnf de 3,3% de zoo	pred. zoo (0,001-0,1) Bowie (1985). Valor mínimo considera composição do COPnf com 1%zoo e 99%detrito / valor máximo considera 10%zoo e 90%detrito
kef20graus	Taxa de decaimento do carbono lábil para carbono refratário (20°C)	valor escolhido por visualização gráfica da concentração de carbono lábil e refratário no sedimento	intervalo de valores obtido em Qi <i>et al.</i> (2020) table1
keg20graus	Taxa de degradação anaeróbica do carbono lábil no sedimento (20°C)	valor escolhido por visualização gráfica da concentração de carbono lábil e refratário no sedimento	intervalo de valores obtido em Qi <i>et al.</i> (2020) table1, sendo uma composição entre dissolução e mineralização da fração lábil
kfg20graus	Taxa de degradação anaeróbica do carbono refratário no sedimento (20°C)	valor escolhido por visualização gráfica da concentração de carbono lábil e refratário no sedimento	intervalo de valores obtido em Qi <i>et al.</i> (2020) table1, sendo uma composição entre dissolução e mineralização da fração refratária
kfi20graus	Taxa de decaimento do carbono refratário por sedimentação permanente (20°C)	valor escolhido por visualização gráfica da concentração de carbono refratário no sedimento	valor inferior considera insignificante a sedimentação permanente e valor superior corresponde a conversão da velocidade de enterramento (Cole and Wells, 2016) para taxa de enterramento de primeira ordem utilizando uma espessura de sedimento de 0,1 m
khb20graus	Taxa de metanotrofia na coluna d'água (20°C)	visualização gráfica das concentrações de metano e CO2 nas rodadas preliminares	Chapra (1997) p476
kn20graus	Taxa de oxidação do íon amônio dissolvido na zona aeróbica do sedimento (20°C)	Di Toro (1990)	Chapra (1997) p476
kp20graus	Taxa de fotossíntese máxima (20°C)	visualização gráfica das concentrações de fitoplancton nas rodadas preliminares	Bowie <i>et al</i> .(1985) table 6.5 p291
nuvens	Porcentagem de horas do dia, em média, com nuvens	visualização gráfica da temperatura nas rodadas preliminares	valor superior baseado em resultado de análise estatística e modelagem meteorológica global obtido em weatherspark.com
pch4ar	Pressão parcial de metano na atmosfera	valor médio global segundo NOAA	um DP das medições no ar realizadas durante a campanha
pco2ar	Pressão parcial de dióxido de carbono na atmosfera	valor médio global segundo NOAA	um DP das medições no ar realizadas durante a campanha
R_iniBolha	Raio inicial médio das bolhas de metano ao sair do sedimento	média do intervalo permitido	McGinnis (2006)
theta_CChla	Razão média entre massa de carbono e clorofila a na biomassa fitoplanctônica	média do intervalo permitido	Bowie <i>et al</i> (1985), table 6.4 p289
theta_NC	Razão estequiométrica média entre o nitrogênio e carbono na matéria orgânica	razão de Redfield	Bowie <i>et al</i> (1985), table 6.3 p280
thetakab	Coeficiente de temperatura da mineralização	Chapra (1997)	Chapra (1997)
thetakah	Coeficiente de temperatura da metanogênese	escolha por similaridade com demais processos biogeoquímicos na água	escolha por similaridade com demais processos biogeoquímicos na água
thetakca	Coeficiente de temperatura da excreção do fito	Chapra (1997)	Chapra (1997)

Juliano Lucas Souza de Abreu et al.

Símbolo por extenso	Nome	Referência/método de estimativa do valor assumido	Referência/método de estimativa do intervalo permitido (min/max)
thetakcb	Coeficiente de temperatura da respiração do fito	Chapra (1997)	Chapra (1997)
thetakcd	Coeficiente de temperatura da predação + morte do fito	Chapra (1997)	Chapra (1997)
thetakda	Coeficiente de temperatura da decomposição dos detritos	Chapra (1997)	Chapra (1997)
thetakdb	Coeficiente de temperatura da resp. zoo + decom. detritos	Chapra (1997)	Chapra (1997)
thetakdi	Coeficiente de temperatura do decaim. dos detrit. + zoo	Chapra (1997)	Chapra (1997)
thetakef	Coeficiente de temperatura do decaimento do C lábil	Chapra (1997)	Chapra (1997)
thetakeg	Coeficiente de temperatura da degrad. do C lábil no sed.	Dias (2013)	Cao <i>et al.</i> (1996)
thetakfg	Coeficiente de temperatura da degrad. do C refrat. no sed.	Dias (2013)	Cao <i>et al.</i> (1996)
thetakhb	Coeficiente de temperatura da metanotrofia na água	escolha por similaridade com demais processos biogeoquímicos na água	escolha por similaridade com demais processos biogeoquímicos na água
thetakp	Coeficiente de temperatura da fotossíntese	Bowie <i>et al</i> (1985)	Bowie <i>et al</i> (1985)
Tr_Ssed	Trecho do perímetro molhado da seção do rio em que não há deposição de sedimentos	valor hipotético considerando que não foi encontrado sedimento pela equipes de medição em alguns pontos da calha central do rio	valores equivalentes a nenhum trecho sem sedimentação e nenhum com sedimentação na vazão mínima
UR	Umidade relativa média do ar	visualização gráfica da temperatura nas rodadas preliminares	valores médios diários medidos na estação automática de SINOP-A917
velMpar	Coeficiente de ajuste da velocidade média em função da vazão do rio	valor que não interfere na razão entre vazão e área da seção	valores extremos em que a interferência na razão entre vazão e área da seção se mostrou significativa
Velrs	Velocidade de ressuspensão de sedimentos	visualização gráfica das concentrações de carbono no sedimento segundo as rodadas preliminares	limite superior equivalente ao valor usual para Vels segundo Bowie <i>et al</i> (1985)
Vels	Velocidade de sedimentação	visualização gráfica das concentrações de carbono no sedimento segundo as rodadas preliminares	Bowie <i>et al</i> (1985)