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BED-LOAD TRANSPORT

* PBed-load is the mode of transport of sediments where the sediment
particles glide, roll or briefly jump, but stay very close to the bed, which
they may leave very temporarily

* Limiting values for the separation of different modes of transport

Us /W > 0.1 bed-load transport (3.1a)

Us /Wgg > 0.4 suspended-load transport (3.1b)

where u. = shear velocity; and w, = settling or terminal velocity of
particles



Particles in wash-load

Fig. 3.1 Schematic of different modes of sediment transport

* When the particles stay occasionally in contact with the bed and
displace them by making more or less large jumps to remain often
surrounded by water, the mode of transport is termed suspended-load

* Mode of transport of very fine particles is as wash-load



DuBoys’ Approach

I:> Flow

Fig. 3.2 Defination sketch of DuBoys bed-load model

* DuBoys (1879) assumed that the sediment moves in layer having a
thickness Asg

* The layers move due to the tractive force given by bed shear stress
T, (= pghS) is applied to them, where p = mass density of fluid; g =
gravitational acceleration; h = flow depth; and S = streamwise bed
slope



* The top layer is one where the tractive force balances the resistance
force between these layers

9 = pghS = umAe(ps —p)g (3.2)

where p = frictional coefficient; m = number of layers; and p, = mass
density of sediment

* The fastest moving layer is the top layer and moves with the
velocity of (m - 1)v,

* If the layer between first and m-th moves according to a linear
velocity distribution, then the amount of sediment (in volume per unit
time per unit width i.e. m3/sm) is given by

Qp = Aevem(m—1)/2 (3.3)

* The critical condition at which sediment motion is just about to begin
Is given by m =1

T¢ = HAe(ps —p)9 (3.4)



* This, in turn, results in the relationship

T =Mt (3-5)

* ltis introduced into Eq (3.3) and the following is obtained

S ’Co(TO —TC) (36)

Tc

Op =

* DuBoys (1879) referred the first term within the square bracket in
RHS of Eq. (3.6) as a characteristic of sediment coefficient and gave it
a symbol y

dp = XTo(To —T¢) (3.7)

* Straub (see Rouse 1950) related y to the particle size d (in SI
units) (0.125 mm < d <4 mm) as

v =6.89x10°/d"7 (3.8)



Other Empirical Equations of DuBuys Type:

* Schoklitsch (1934) proposed for particle size 0.305 mm < d < 7.02

mm

7000
% = 4o 81 (a-1q0) (3.9)

where g, = bed-load transport rate in weight per unit width; g = flow
rate per unit width; and q, = 1.944x105/S1-33 (m3/sm)

* Schoklitsch (1950) later modified the equation for d =2 0.6 mm
gy =25008"(q- ) (3.10)

where g, = h >38Y2/n = 0.26A35d?"2/S76; n = Manning coefficient; h, =
critical flow depth; A = s — 1; and s = relative density of sediment

* Shields (1936) put forward
qb_lo (@ Oc) (3.11)

where ® and ® = Shields and critical Shields parameters, respectively



* The Shields parameter is given by © = 1,/(Apgd) and ©_ corresponds
to T,

gb—lopgqs(@) ©c) (3.12)

* Meyer-Peter (1951) gave the following equation
0y =8(Agd*)">(©-6;)'” (3.13a)
Op =8ps9(Agd”)>(@-0,)" (3.13b)

* For gravel-bed rivers, Parker (1979) proposes

0.5 (©—0.03)*
®3

o =11.2(Agd") (3.14)

* Nielson’s (1992) equation for sand and gravels (0.69 mm < d < 28.7
mm)

Ob = (Agd*)">©(120 - 0.05) (3.15)

* @ =q,/(AgdP)°> = g,/[(ps9)NAGAP)°>] = g, (SIA)[(p,g)(AGAP)?>], where
9, = bed-load transport rate in submerged weight per unit width



Einstein’s Bed-Load Function

Einstein (1950) developed a bed-load model from probabilistic concept

Rate of Deposition:

* The average traveling distance L, is the distance that a particle
travels from its starting point until it is deposited on the bed

* The step length of a particle diameter d can be expressed as Ad and
for spherical particles, A = 100

* |f after a particle travels a step length, it falls on the bed at a point
where a local lift force is greater than submerged weight of particle, and
the particle does not stop moving but travels a second step length

* If pis the probability of the lift force being greater than the
submerged weight, n(1 — p) particles deposit on the bed after traveling a
step length, where n is the number of particles in motion

* Only np particles continue moving

* After traveling the second step length, np(1 — p) more particles stop
moving and only np? particles remain in motion



* All n particles stop on the bed after some time elapses

* The traveling distance can be determined as
® N INe

Ly=>(0-p)p (n+DHAd =—— (3.16)
n=0 1- P

* If g, represents the rate of bed-load transport in dry weight, than
rate of deposition on unit area = g,/(L,x1) = g,(1 — p)/(1d)

Rate of Erosion:

* The number of particles per unit area can be estimated as 1/(A,d?),
and their total weight is A,p gd®/(A,d?)

* If pis the probability for a particle to begin to move, sediment with a
total weight of (A,p.g/A,)pd is eroded from the bed per unit time, where
A, and A, are coefficients related to the shape of the particles

* Exchange time or time for a particle to be removed is assumed
proportional to the time for a particle to fall a length of one diameter in
still water



t~i:A3(d/Ag)0-5 (3.17)

SS

where A, = constant of time scale

* the rate of erosion per unit area of the bed surface
is (A,p 9/A)PdI[AL(d/AG)°] = p A°>gt-opdP>[A/(A,AL)]

Equilibrium of Sediment Transport:

* Sediment transport is in equilibrium if the amount of sediment
eroded from the bed is equal to the amount of sediment deposited on
the bed for a given time

Jp(1-p) 05.15.405 A
= DA dv~” —=
v psA 9 P AA; (3.18)
* |t can be written as
P
= AD
b A. (3.19)

where A. = A/A./(MAA,), and © =

~ I/ - ANKL1T K1 R\



* The parameter @ is called bed-load transport intensity and the
probability is given by
A.D

P~ A D (3.20)

Probability Determination:

* The submerged weight of particle F is
Fo = A (ps —p)gd’ (3.21)

* The lift force F, is given by

1
-7
where C, = lift coefficient; and u, = effective velocity at the edge of the
viscous sub-layer

F_ =-C_Ad?pug (3.22)

* Einstein and EI-Samni (1949) found that for uniform sediment, if
velocity at an elevation z = 0.35X is taken as effective velocity u, in Eq.
(3.22), the distribution of fluctuating lift force follows normal distribution
with a standard deviation equal to half the mean value and C, = 0.178



* The effective velocity u, is expressed as u,/u.=5.75
l0g[(30.2)(0.35X/A,)], where X(A, /6 > 1.8) = 0.77A,; X(A,/6 < 1.8) =
1.396; A, = apparent roughness (= k/x); and & = viscous sub-layer
thickness (= 11.6v/u.)

* The apparent roughness A, can be obtained from the curve given
by Einstein (1950) (Fig. 3.3)
2
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Fig. 3.3 Variation of correction factor x with k /3, where k_ is the
equivalent roughness height of Nikuradse (= d)



* The lift force can be expressed as

F_ =0.178A,d? %p5.752 gR;S log?(10.6X /A )(1+1) (3.23)
where R}, = hydraulic radius due to grain roughness; such that shear
velocity u. =(g R,S)%->

* The random function n represents the fluctuating component of the
lift force being distributed according to the normal error law, where the
standard deviation n is a universal constant of n, = 0.5

N ="NonN=* (3.24)
where 7. = nondimensional number representing fluctuation of lift force

0.178A,5.75%
2

* The term probability p of erosion is expressed as the ratio of F to
F,, which has to be smaller than unity

Fo 1 Ad 2A, 1
I>—== , 5 | (3.26)
FL \+mon« ARpS L 0.178A,5.75% J1og=(10.6X / Ay)

F pd2gR.S logZ(10.6X /Ay )(1+M.Mg) (3.25)




* Using different symbols, Eq. (3.26) becomes

1>[ : j\PZB (3.27)
L+nons ) B

where ¥ = flow intensity, that is Ad/( R;S); B = 2A,/(0.178A,5.752); and
B, =log(10.6X/A,)

* Einstein (1950) suggested two correction factors £ and Y termed
hiding factor and lift correction factor, respectively, being determined
experimentally

* Small particles in sediment mass seem to hide between larger ones
or in viscous sub-layer, such that their lift must be corrected by &1

* The hiding factor & of sediment particles is a function of d/X, where X
is the characteristic distance (Fig. 3.4)

* The lift correction factor Y describes the change of lift coefficient in

the sediment mass having different roughness and is a function of k /5
(Fig. 3.5)
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Fig. 3.5 Variation of lift
correction factor Y with k /&
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* Whether the fluctuation of velocity is positive or negative, the lift
force is always positive

* The inequality for the lift force can be modified as

, Pp°
L+ngn.|> EYB' D (3.28)
Px
where B’ =B/p?%; and 3 = log(10.6)
* Rearranging, it becomes
B'V«

> - B, . (3.29)
Mo

1
No

Ny +

where VY. = EYY(B/B,)? ; and B. = B'In,

* The critical condition for particles to be removed from the bed is

I
1n=i&Tw7£ (3.30)



* Between the two values, no bed-load motion occurs

* Probability p of motion becomes

B.Y,—

1 No 7
p=1-—= | exp(-t%)dt (3.31)
T gy !
Mo

* Equating Egs. (3.20) and (3.31), the bed-load equation becomes

1

B*‘{I*_i
1 Mo ) A.D
| —— —t°)dt = :
R v (3.32)

No

* Experimentally determined 1/, =2, A, =43.5and B, = 1/7
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Fig. 3.6 Variation of ', with ® obtained from Einstein’s (1950) Eq. (3.32)



Yalin’s Bed-Load Equation

Yalin (1972) proposed a bed-load model from analysis of forces

* Letu,,and u,, represents velocity component of a sediment particle
in the streamwise and normal directions

* The force components of flow acting on the particle in the
streamwise direction F, and normal direction F, are

dUb
F, =m'—>*
X dt (3.33a)
rdubZ
-F,-Fg=m it (3.33b)
where m' = submerged mass of the sediment particle
T
Fy = ¢ Coxpd” (U~ Uy)° (3.34a)
F, = chzpd%gz (3.34D)

where u = flow velocity received by the particle



* Aparticle jumps up from the bed under the action of a lift force F,

* The lift force then decreases with distance from the bed and is
equal to F; at an elevation where the particle reaches its maximum
vertical velocity component

* The maximum vertical velocity component can be obtained as
’ dubZ
dt
* To solve these equations, Yalin made the following assumptions:
F,/Fg ~ exp(-z/d)

" C,,and C,, are constants

— FZ — FG + FL =m (335)

"  y/u.is constant at the bed

* He obtained an expression for u,,, and then he determined its
average value over the time when it is in motion

1
Up = U*C1|:1——ln(1+a151):| (336)
a5

where s, = (® - 0,)/0_ a, = 2.450 0>/s%4, and C, = a constant



* The parameter ®, being the Shields parameter, is reciprocal of the
parameter ¥

* He determined the submerged weight of the bed-load per unit area
W, from the dimensional analysis

W

e f,(O,R,) (3.37)

where © = pgR,S/(Apgd); R, = hydraulic radius; R, = u.d/v; and v =
kinematic viscosity of fluid

* The particle Reynolds number can be expressed

3
R, =1/Agg ® (3.38)
AY%

Therefore, Eq. (3.37) can be rewritten

W Agd?
s :f{@, J J (3.39)

(ps —p)gd V2



* At the initiation of bed-load motion, W_ =0

3
fz(@C,AgSj _0 (3.40)

v

Combining Egs. (3.39) and (3.40)
WS

e £,(0,0,) (3.41)

* Yalin assumed

=C,S 3.42
(ps—p)gd (342)

where C, = constant to be determined



Substituting Egs. (3.36) and (3.42) into Eqgs. (3.33a) and (3.33b) and
determining the constants from measured data, the bed-load transport
rate g, in weight per unit width is given by g, = g, (s/A) = W, by, (S/A)

* The bed-load equation of Yalin (1972) is

dp = 0.635pgsdu.,s; {1 —alsln(l + alsl)} (3.43)
1°1



Bagnold’s Approach

* Bagnold (1973) assumed: To sustain the saltation of a particle, the
flowing fluid must act on the particle to provide a momentum
component m’'u’ with the time interval At between successive collisions
of the particle with the bed, m’ is the submerged mass and -u’ is the
reduction in particle velocity in the direction of flow because of its
collision with bed

* The flowing water has to exert a force on the particle with a
component in the direction of flow
- m'u" Fgu'

F =
=AU gat (3.44)

* If u, is the average velocity of the particle, then the work done by
the flowing fluid on the particle is F, u,

* Energy consumed in unit time by the flow is F u,tane, where ¢ is
the frictional angle. Combining them

Fy u’
——=tan@ =
FG gAt

(3.45)



* If the flow velocity at z, (at which the particle is acted upon by F,) is
u,, then the difference of u, and u, is u, (= u, — u,)

* |If many particles move along the bed, then

Tup = FgUp tan @ = gy tan @ (3.46)

where T = shear stress for maintaining sediment motion at z = z,

So, the bed-load transport rate (in submerged weight) is

Obs = (Up —Uy) (3.47)

- tan @
Using a coefficient a, the shear stress T is given by
T =ar, (3.48)

* If the flow velocity follows the logarithmic law in the zone z > z , and
the velocity at an elevation 0.4h from the bed is taken to be the
average velocity, then

0.4h
Zn

U, =U —5.75ux« log

(3.49)



Using Egs. (3.48) and (3.49) into Eq. (3.47), one gets

a 0.4h
Obs = 'o {U —5.75Ux log( j—ur} (3.50)
tan @ Zn

Determination of a:

* Bagnold assumed a as follows

a:”*;“"‘c (3.51)

where u., = critical shear velocity of the particle

Determination of u:

* The force exerted on a particle by the flow can be expressed
Fy == Cpx _dzpur = Fg tan ¢ (3.52)

where Cp, = drag coefficient



* For a particle falling in still water, a force F, acts on the particle

* If the submerged weight of the particle is balanced by this force, the
particle falls at a constant velocity w,

1 T
F, =5ch ZdzpwszS = Fg (3.53)

where Cp, = drag coefficient for a settling particle

From Egs. (3.52) and (3.53), one gets

Ur =W (Cpy tang/Cpy) (3.54)

* Measured data showed that C,,= C,, and tan®>¢ = 1

Therefore, Eq. (3.54) becomes
Up = Weg (3.55)



Determination of Z,

* If no sand dunes form, the average elevation of the saltating
particles is proportional to their diameter

z, =md (3.56)

where m, = K,(u./u..)°° depending on the flow
intensity

* Inthe laboratory, K, = 0.4 was found by Francis (1973). In rivers, it
becomes 2.8 for sands and 7.3 - 9.1 for gravels (Bagnold 1977)

* Equation of bed-load obtained by Bagnold is

g, = 2 e, TSV 1—5.75(u*j10g 0.4h —(Wssj (3.57)
U, Atang U m,d U

Note: g, = g,,(S/A).




Engelund and Fredsge’s Bed-Load Equation

Engelund and Fredsge’s (1976) model is applicable to the flow
condition close to the threshold of sediment motion

* The bed-load particles are transported with a mean transport
velocity U

* The tractive or agitation force is given by

I
Fo = pCo gdz(au* — ) (3.58)

where C, = drag coefficient; and au. = flow velocity at particle level

* If the particle is at a distance of one to two particle diameters above
the bed, oo =6 to 10

* The stabilizing frictional force on the moving particle is

d3
F=Apg ™~ Hg (3.59)

where p, = dynamic friction angle for the bed sediment



* For the equilibrium, the tractive force and the frictional force are equal

1 - d’
EPCD§d2(GU*—Ub)2 = Apg %Hd (3.60)

It gives

- 0.5

Up _ all_(%j } (3.61)
U, C)

where 0, = 4p /(3a2C))

* 0, is the critical value for the initial movement of a particle in a
compactly arranged bed, and G, is the critical value for a particle
protruding from the bed surface. Measured data showed ©, = 0.56,

- 0.5
“b_ a[l _ 0.7(®Cj } (3.62)
U, ®

* Engelund and Fredsge (1976) treated sediment particles as
spheres of diameter d, so that there are approximately 1/d? spherical
particles in a unit area of bed surface



* For certain flow intensity, the portion of the particles on the bed
surface that are moving is p (probability)

* Rate of bed-load transport is given by

g =~ d°psg 1 (3.63)
Using Eq. (3.62) into Eq. (3.63) yields

0.5
g 10" d30.a-Pl1-07 O¢ u 3.64

* According to Bagnold, the shear stress of flow is composed of
particle shear stress t and fluid shear stress '

* He suggested that the fluid shear stress t’ equals the critical bed
shear stress for initiation of motion of bed particles

T=1.+1 =1, +nkFy (3.65)

where n = number of moving particles per unit area of bed surface; and
F, = drag force acting on the particles



* Engelund assumed

3
nd
Fy = 7Apgud

The results become

T T
©=0, +ng (ndz):®c +gMd P

where p = nad?
6
p=—-(0-0.)
T

The bed-load equation is

d U ) 0.
9 =10~ psg g (©-0)(©" -0.70¢°)

Hd

(3.66)

(3.67)

(3.68)

(3.69)



Transformation and Comparison of Bed-Load Equations

Mevyer-Peter Equation:

* Eqg. (3.13b) can be expressed according to Chien (1954) as

1 1.5
D = 8(—0.047) (3.70)
P

* For initiation of bed-load transport (© — 0), ®,= 0.047; and for a
high bed-load transport (® >> @,), ® = 8/y!~

Einstein Equation:

* Eq. (3.32)is written for 1/m, =2, A.=43.5and B, = 1/7 as

0.143¥-2
1—L | exp(—tz)dt _ 30
\/E —0.143¥-2 1+43.50

(3.71)




Yalin Equation:

* Eq. (3.43) is transformed as

S 1
®=0.635211-—In(1+as 3.72
LP{ s ( 11)} (3.72)

* Forinitiation of bed-load transport ® - ©_ (or very small) and a;s;
Is also small

1 ;S
— In(l+a;5)~1-11 3.73
s (1+a;s;) 5 (3.73)

* The bed-load equation becomes

2
pls |
O®=078s"%4"¢c | -~ __ 74

\PO.S[LIJ \PCJ (3 )

* For a high intensity bed-load transport, © is large, and a;s; — oo

In(1+a;5;) =0 (3.75)



* The bed-load equation becomes

~ 0.635

o= s (Ye=P) (3.76)

Bagnold Equation:

* Eq. (3.57)is transformed as

1 1 | 1 md w
o= - 5.75l0g30.2 1= — 'ss 3.77
‘P(\{!M - ]Lan(p( . h U« ﬂ (3.77)

Engelund and Fredsge Equation:

* Assuming p, = 0.8 (for common river sands), Eq. (3.69) can be
expressed as

| 1 | 0.7
O=11.6] —— — 3.78

* For a high bed-load transport ® >>0_, ® = 11.6/y'?




Comparative Results:

* The ®-y relationships for
100 particle size of 0.2 mm and

§ 2 mm are given and they
1 Einstein (1950) give similar results

. * The curve for Bagnold
equation is the average of
Bagnold (1973) the two cases

Yalin (1972)

* Forvy > 2, Meyer-Peter,
Einstein, and Bagnold
- equations are close
0.1 e | tOg€ther, while Yalin
0.0001 0001 001 0.1 1 10 100 | equation yields smaller
¢ values for the bed-load
transport

Meyer-Peter (1951)

Fig. 3.7 Comparison of the equations of

Meyer-Peter, Einstein, Yalin and Bagnold |°* Engelund and Fredsge
equation is good for bed-

load near threshold
condition




Characteristics of Particle Saltations

General characteristics of particle saltations after Francis (1973) and
Abbott and Francis (1977):

* The saltation mode of transport is confined to a layer with a
maximum thickness of about ten particle diameters, where the particle
motion is dominated by the gravitational forces

* The particles receive their momentum directly from the flow
pressure and viscous skin friction

* On the rising part of the trajectory, both the vertical component of
the fluid drag force and the gravitational force are directed downwards

* During the falling part of the trajectory, the vertical component of the
fluid drag force opposes the gravitational force

* The lift force is always directed upwards as long as the particle
velocity lags behind the fluid velocity

* During impact of a particle with bed, most of its momentum is
dissipated by particles of the bed in a sequence of horizontal impulses
that may initiate rolling mode of transport known as surface creep



Fig. 3.8 Definition sketch of particle saltation

* The direction of the drag force F, is opposed to the direction of the
particle velocity v, relative to the flow, while the lift component is in the
normal direction

* Assuming the spherical particles and the forces due to fluid
acceleration are of a second order (Hinze 1975), the equations of
motion, according to White and Schultz (1977), can be written as

maX—FL(Zj—FD[U_Xj:O (3.79a)

Vy Vr




U—X 7
maZ_FL£ y j+ FDLVJ"‘ Fc =0 (3.79b)
r r

where m_ = particle mass and added fluid mass; v, = particle velocity
relative to the flow, that is [(u - X)? + 22]; u = local flow velocity; X and Z
= streamwise and vertical particle velocities, respectively; and X and Z
= streamwise and vertical particle acclerations, respectively

* The total mass of the spherical particle can be represented
1
Mg = (ps +amp)md” (3.80)

where a,, = added mass coefficient

* Assuming potential flow, the added mass o, of a perfect sphere is
exactly equal to the half the mass of the fluid displaced by the sphere

* When the flow is separated from the solid sphere, a,, may be
different. Here, a,, may be considered as 0.5



* The drag force F,, which is caused by pressure and viscous skin
friction, can be expressed as

| nd? 0
Fo =—Cp——pV 3.81
p=5Cp—,PVr (3.81)
* The drag coefficient C, can be determined from the empirical

expressions given by Morsi and Alexander (1972)

* The lift force in a shear flow is caused by the velocity gradient
present in the flow (shear flow) and by the spinning motion of the
particle (Magnus effect)

* For a sphere moving in a viscous flow, Saffman (1968) derived the
lift due to shear as

ou 0.5
F_ (shear lift) = C, pv’>d?v, (5) (3.82)

* The lift force due to spinning motion in a viscous flow determined by
Rubinow and Keller (1961) is given by

F_ (Magnus lift) = C, pd>v,e (3.83)

where o = angular velocity of the particle



* The submerged weight of the particle is

Fo :gd3Apg (3.84)

* The flow velocity distribution assumed to follow logarithmic law is
given by
U Z

U= —h{—j (3.85)

K ZO

where k = von Karman constant (= 0.4); z, = zero-velocity level, that is
0.11(v/u.) + 0.03k,



Boundary Conditions and Solution Scheme:

* The bed level is assumed at a distance of 0.25d below the top level
of the bed particles

* The initial position of the particle is 0.6d above the bed level

* Experiments of Francis (1973) and Abbott and Francis (1977)
showed X = 2 =2u,

* Egs. (3.79a) and (3.79b) can be transformed to a system of ordinary
simultaneous differential equations of the first order

* The system can be solved numerically by means of an automatic
step-change differential equation solver



SUSPENDED-LOAD TRANSPORT



* Suspended-load refers to sediment particles that are supported by
the upward component of turbulent flow and stay in suspension for an
appreciable period of time

* The suspended-load transport rate can be determined as

h

gs = Jeudz (4.1a)
a
h
ds =ps9 Jcudz (4.1b)
a

where g, = suspended-load transport in volume per unit time and
width; g, = suspended-load transport in weight per unit time and width;
u = time-averaged velocity at an elevation z; ¢ = concentration by
volume at an elevation z; a = thickness of bed-load transport; h = flow
depth; p, = mass density of sediment; and g = gravitational
acceleration



Diffusion Theory of Suspension

* The solutions developed for molecular diffusion are by analogy
important for turbulent diffusion

* Analysis of molecular diffusion is based on the continuum
hypothesis and Fick’s law

P =t (4.2)

where P = rate at which the quantity is transported across unit area
normal to z-direction; ¢ , = diffusion coefficient; and C = concentration
of the quantity transported by diffusion

* Introducing the requirement of the conservation of matter, Eq. (4.2)
becomes

oC oP  9°C
== =&n—> 4.3
ot 0z m 672 (4.3)

where t = time



Eq. (4.3) has a solution

2
C(z, V=03 > exp[ Z ] (4.4)

et
where B = integration constant

* In presence of flow, the Fick’s law is generalized to 0C/ot + V-(Cu) =
e,,.V2C, and then for incompressible flow, it becomes 0C/ot + u-VC =

e, V2C or

oC oC oC éoC 0°C 0°C 0°C

UV AW =E — tEm 5 tE 5
ot ox oy oz oxr " oy? 022 (4)

In tensor form, Eq. (4.5) becomes

oC oC 0°C

——=-Uj —ten 4.6
ot Yoxi " OXioX: (4.6)

where x; = rectangular coordinate system for /=1, 2 and 3. Here, ¢,
refers to molecular diffusion. For dispersion in a turbulent flow field, C
=C + C'and u, = Uj+ uj, where C and U; = time-averaged concentration
and velocity at a given point; and C’'and uj= fluctuations of C and u,
respectively



* Substituting C and u; in Eq. (4.6) and using Reynolds conditions,
one obtains
oC oC 0 =~
— =l —— C'ui)+
ot I aXi Xj ( I) em
* Elder (1959) found it convenient to define a coefficient of turbulent
diffusion such that
oC

. =—C'u! .

@i 5 =~ (4.8)

0°C
6xi aXi

(4.7)

* Under the assumption that molecular and turbulent diffusions are
independent and thus additive

gij (X)) = (&t)ij + &m (4.9)

* In open channel flow, the turbulent diffusivity is usually considerably
larger than the molecular one

* Time-averaged value is no longer required and therefore dropped

* The scalar ¢; replaces ¢; that refers to as the diffusion tensor

oC _ aC a[_acj (4.10)

—— =—Uj —+——| & —
ot aXi 8xi 6Xi



Vertical Distribution of Suspended Particles

* The concept of an analogy between the process of mass and
momentum transfer in a turbulent flow is known as the Reynolds

analogy

* Considering the transfer of momentum and mass in x,-direction

ou ou
Momentumflux = p(ep +V)—= = pepg — 4.11a
p(em )6x3 PEM o%; ( )
MaSSﬂuXZ(St-l—Sm)@:S:;% (4.11b)
8X3 8X3

where p = mass density of fluid; and v = kinematic viscosity of fluid



* Under the assumption that ¢,, > v and ¢, > ¢, the Reynolds analogy
is valid if the mechanisms which control both the mass and momentum

transfers are in fact identical

* As this is most likely the case, one can use g,, and ¢, interchangeable
in the x;-direction

£y =3 (4.12)

* If and only if the solid particles follow the motion of the fluid particles,
equality between the diffusivity of fluid mass ¢, and the diffusivity of
suspended solid mass ¢, exists

€53 = Pej3 (4.13)
where 3 = factor of proportionality

* Experimental data revealed that 3 is unity



Uniform Turbulence Distribution at Steady-State Condition

* For steady condition 0C/ot =0

* Assuming sediment concentration (by weight) C = C(z) and ¢ (e,
replaced by ¢ ) being independent of z, Eq. (4.10) can be expressed as

O=CW33+83d—C (4.14)
dz
where w , = settling velocity of the sediment particles
i \/
-£,0C/oz
N
b
W,C VA

Fig. 4.1 Settling and diffusion of sediment



* The solution of Eq. (4.14) is

C_ exp{_ Ws (2 ‘a)} (4.15)

a €s

where C_ = a reference concentration (by weight) at a distance a
from the bed

* For high concentration, Eq. (4.14) must be modified to take into
account the sediment particles occupy a certain fraction of the total
volume

* Acertain volume of sediment w, C settles through a unit area, this
volume is replaced from below by the fluid and sediment. The
concentration is also approximately C, so the volume of sediment
transported up through the unit area is C(w,,C)

0=C(l-C)wg +asc(jjcz: (4.16)



Nonuniform Turbulence Distribution at Steady-State Condition

* Separating the variables, Eq. (4.14) can be rearranged as

OI—C+WSS$:O (4.17)
Es

* The diffusivity of solid particles ¢, is given as a function of z, that is

e, = €4(2). Integrating Eq. (4.17) yields

Zdz
C =C,exp| —Wg [— (4.18)
a®s
* For turbulent flow, the Reynolds stress t can be expressed as
du
—ep— 419
T=Ep (4.19)

where ¢ = eddy viscosity or momentum diffusion coefficient of fluid

* The Reynolds stress distribution along z is given by

VA
o ro(l _hj (4.20)

where 1, = bed shear stress



* Assuming that logarithmic velocity distribution is valid

du _ u« (4.21)
dz «z

where u, = shear velocity; and k = von Karman constant (= 0.4)

From Eq. (4.19) — (4.21), one gets

&, = ks (h— z)% (4.22)
Eq. (4.13) suggests that
£ = Bicts (h — z):] (4.23)

* Inserting ¢, from Eq. (4.23) to Eq. (4.18) and integrating

C h-z a \°
C_:( Z .h—aj (4.24)
a

where { = w_/(ku.)



* The concentration distribution equation was introduced by
Rouse (1937)

* It can be used to calculate the concentration of a given w_ of
the sediment size at any distance z from the bed if a reference
concentration C_ at a distance a is known

* The suspended-load of sediment is given by

h
Js = JCudz (4.25)
a
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Fig. 4.2 Vertical distribution of suspended sediment concentration

* Atthe bed (z = 0), the concentration C becomes infinity breaking
down the Eq. (4.24)

* Einstein et al. (1940) suggested that the suspension is not possible
in the so-called bed-layer, which has a thickness of 2d

* For low values of , the sediment distribution is nearly uniform,
while for large values of (, little sediment is found at the free surface



Estimation of CQ:

* The depth a and concentration C_ in Eq. (4.24) are called as
reference elevation and reference sediment concentration

* The reference elevation a is the boundary between the bed load
and the suspended load

* Bijker (1992) suggests that a is taken as the bed roughness k  and
relates C, to the bed-load transport q,

* |tis assumed that bed-load transport takes place in the bed-load
layer from z =0 to z = a = k, and in this layer, there is a constant
sediment concentration C,

* He argues that in hydraulically rough flow there is still a viscous
sub-layer, which starts from z = 0 to z = z, where the linear velocity
distribution is tangent with the logarithmic velocity distribution

* He estimated the depth-averaged velocity u, up to depth z=a (=
K,), as U, = 6.34u.. Given bed-load q, = C_U, k,, the sediment
concentration C, is estimated as C,_ = q,/(6.34u. k)



Sediment Concentration at Free Surface

°* |In Eq. (4.24), the sediment concentration C at the free surface z=h
IS zero

* ¢, is zero at free surface, but ¢, is finite there

* For momentum exchange, the relationship of the Reynolds stress t
=pu'v' holds

* Sediment suspension depends primarily on v/, which is much less
than u'

* At the free surface logarithmic law of velocity distribution does not
hold

* Following equation makes possible to estimate the velocity near
free surface

1.5
Umax =U _ 2 arctanh(%) (4.206)

U K

where u_ ., = maximum value of u which occurs at z = h



* The mixing length / and momentum exchange coefficient ¢, are
3
1= 5h 1_(h—z)
3 h
3
oo =Sueh M2 112
3 h h

* Using the relationship ¢, = Be,, the differential equation is

CWSS + BEU*h

The solution of Eq. (4.29) is

o 7\075

Cca — exp(pQ)
("
Q=0.5In

25

dz

where (g = w/(Bxu.)

iGN

3

++/3 arctan{—

h

Z

3(h-2)

h

|

z

Z=a

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)



Influence of Sediment Suspension on Velocity and
Resulting Concentration

Velocity Distribution

* Einstein and Chien (1955) modified the traditional logarithmic law of
the velocity distribution due to the influence of sediment suspension

* The zone close to the bed, where the sediment concentration is high,
referred to as heavy-fluid zone

* The remaining portion of the flow, where the sediment concentration

is relative low, has no change of fluid mass density and is called as
light-fluid zone

* The clear water flow follows the logarithmic law of velocity distribution
L 2311{30 2 ) (4.32)
U K kS

where x = von Karmans constant; and k, = equivalent sand roughness
of Nikuradse



* Eq. (4.32) was derived assuming that the Reynolds stress is

du
4,
T=pE, o (4.33)

* |n sediment-laden flow, a more reasonable velocity distribution can
be obtained by the inclusion of the participation of solid particles in the
exchange mechanism

* Einstein et al. (1955) derived the following relationship

r:(uf*ppcj 32 (4.34)

* Within the light-fluid zone of the small concentration, Eq. (4.34)
becomes Eq. (4.33)

* Under these circumstances an equation similar to the clear water
equation Eq. (4.32), but with different numerical constants

* Experiments suggested the following relationship

Y 1766+ 22 2 (4.35)
U K 545k8



* Experiments revealed that close to the bed, whenever the local
sediment concentration reaches a value of 981 N/m3 or z/h < 0.1, Eq.
(4.35) fails

* Shear stress given by Eq. (4.34) can be approximated by t, as

h
19 = J[p+(ps —p)C]gS dz (4.36)
0

where S = energy slope

* The velocity distribution is thus obtained as

_ h
1+Ps =P Licy,
u_23

h
P To h{p\eki) (4.37)
Use K \/1+p8_pca S
p

where C, = sediment concentration at the surface of the bed layer; and
A, = constant to be determined

* The depth averaged velocity U can be obtained from Eq. (4.35)

Y 1766+ 2‘3111( h j (4.38)

U K 965ks



Sediment Distribution

* Without lacking of generality, Eq. (4.5) can be written as

% = —U; §_C @Ui + 0 €i oC (439)
ot 8xi 8xi 8xi 8xi

* For the special case of uniform flow in x,-direction and the

concentration being constant with time, the variation in x; = z
component are considered for which u; = w

oC ow 0O oC
0=—wWw—-C—+—|¢g,— 4.4
oz 07 oz (82 82) (4.40)
* The rate of change of suspended matter is given by
O:_WS%_CWVM@(&S%) (4.41)
0z oz 0z 0z

where w, = velocity of solid particle in z-direction. For the fluid by

0= _W@_(l_c:)a_wﬁ(gz @j (4.42)
o/ oz 0z 0z

* The velocity relationship can be given by

Wy =W — W (4.43)



Eliminating w, and w from Egs. (4.41) and (4.42)
[es +C(g; —ss)]%g+(l—C)Cwss =0 (4.44)
where ¢, and ¢, = diffusivity of solid matter and liquid matter

* To simplify the solution, the diffusion coefficients of solid and liquid
matter are assumed same, thatis ¢, = ¢,

£ ‘j']|(23+(1—c:)c:wSS =0 (4.45)

The solution of Eq. (4.45) is

c Y1-C,) ( [i=z/h B,—+i-a/h)”
= : (4.46)
1-C A\ Cg l1-a/h Bg—4/1-y/h
where (, = w_J/(x B.u.); B, = constant of integration in the velocity

distribution law (B, < 1); and «, = constant similar to von Karman
constant




* For large sediment concentration, Eq. (4.45) should be used as

dC P —pP p du
— +|1+=—"C |1-C)CWe —-—=0 4.47
© (1070 Y oon? 8 wan

* For small sediment concentration, as encountered in the light-fluid
zone, Eq. (4.45) reduces to

£ (ZCZ:+CWSS =0 (4.48)



Suspended-Load by Diffusion Theory

Lane and Kalinske’s Approach

* Lane and Kalinske (1941) assumed ¢, = ¢,and = 1, Eq. (4.23)
becomes

g5 = KUx(N~ z):] (4.49)

* The average value of ¢, along z is

h
83=1I83d ];u*l(h z)zdz (4.50)

* Integrating Eq. (4.50) and using the von Karman constant k = 0.41

£, =115u*h (4.51)

* Introducing Eq. (4.51) into EqQ. (4.15)

_ _ 4.52




* The suspended-load (by weight) per unit time and width is given by

h
gs = [Cudz (4.53)
0
Using Eq. (4.52) into EqQ. (4.53)
1
0s =0qC,P. exp( SJV;Saj (4.54)

where q = flow discharge per unit width; and P, = function of w_/u, and
relative roughness n/h'/6, where n = Manning roughness coefficient
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Fig. 4.3 Relationship of P
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. nrs e o AN, after Lane and Kalinske
SESER (1941)
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Einstein’s Approach

* Einstein (1950) assumed thatp=1and k=04

Replacing shear velocity u, with shear velocity due to grain
roughness ux

Wi
_ = 4.55
CB . 0.4ux ( )

* The velocity can be expressed

L 5.7510g(30.22]
U Ak

where A, = k/x = d./x; and x = correction factor

(4.56)

Substituting Egs. (4.24) and (4.56) into Eq. (4.25)

h (h—z a ) 7
= (C - 5.75uxlog| 30.2— |dz 4.57
oo = Joa " 12, ) saseiog 302 (.57

Replacing a with E = a/h and z with z’' = z/h

1 ¢ 1/1_N\5
g, = jc:uhdz':hu;ca(Ej 5.75 j(l Zj log| 2222 |dz (4.58)
E I1-E E Z Ak/h




Eq. (4.58) becomes

¢ 171\ 171\
gs = 5-75Cau;h(Ej log 30.22 j(l Z) dz+0.434 j(lzj Inzdz| (4.59)
1-E A JE\ Z E\ Z

* As the closed-form integration of Eq. (4.59) is impossible, Einstein
(1950) expressed it as

g =1 1.6Cau>’ka{log(322hjll ' |2} (4.60)
k
1 177 0\S
| =0216—= j(l Z) dz (4.61a)
(1-E)~E\ 2
1 177 0\S
I, =0216-C j(l Zj Inz dz (4.61D)
(1-E)° g\ Z

* Bed-load rate of a given size j, is i,g,

* If the velocity with which the bed-load moves is u,, then the weight
of particles of a given grain size per unit area is i,g,/u,

* Average concentration in the layer is given by

i
C, = A QTQS (4.62)



* The average bed-load velocity u, was assumed to be proportional
to shear velocity due to grain roughness u:

* Eq. (4.62) becomes

1 ip0p
C, = : 4.63
2 11.6 auk ( )

* The suspended-load equation for each fraction, where a bed-load
function exists

i ] 30.2h i
1505 :Ibgb{log(Akjlﬁ |2}:'bgb(PE|1+ 15) (4.64)

where i = size fraction in suspension; and P; = 2.303log(30.2h/A,),
transport parameter



Brook’s Approach

Brooks (1963) assumed that the logarithmic velocity distribution is
applicable and sediment concentration follows Eq. (4.24)

g ¢
Usx 1 1-7 b Usx 1 1-2 P
=C 1 dz Inz dz _
Js O-Shq“ +Kujé( 7 ) +KU EI( 7 j " } (4.65)

where q = flow discharge per unit width; and C, ., = reference
sediment concentration at y = 0.5h

* Eq. (4.65) can be expressed in terms of a transport function T,

KU
qC?oSSh :TB( Us o Ej (459

* Taking a lower limit of integration at u = 0, E becomes

U
E= exp(— ‘; —1j (4.67)




Eq. (4.66) reduces to

(4.68)
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Fig. 4.4 Brook’s (1963) suspended-load transport function



Chang et al.’s Approach

* Chang et al. (1965) assumed that Eq. (4.23) holds good and
rewrote as

£s =Pruhg(1-¢)">

(4.69)
where € = z/h; u.= (ghS)°>
Substituting Eq. (4.69) into Eq. (4.18)
0.5 Ce
C a5 - (4.70)
Ca 1-(1-9~
C
Alz{ (EO'S) } (4.71)
where C, =
2w_ [ (Bxu.)
Thé equation of suspended-load becomes
h 2Us
gs =/Cudz=C hjUl;——1,4 (4.72)
a K



where /, and /, = integrals are given by

] 76 0.5 Ce

1_(1_E)0.5 | E_,
I, = [ dé 4.73a
3 i £0.5 | & 1—(1-£)%3 ( )

i 75 g 0.5 Ge

-(1-E)> 1( : j% & 05 1
|, = f[| =] <In —(1-&" —=; d¢ (4.73b
Similar to Einstein’s approach, Eq. (4.72) can be reduced to

h 2Usx
— Ul, — | 4.74

05 = gy U~ e Jo (4.74

* It was assumed that the velocity of the bed sediment u, = 0.8U and
the thickness of the bed layer is based on DuBoys’ (1879) assumption

q = J To — 1¢
(I-po)(p—ps)gtane

(4.75)

where j = experimental constant (= 10); p, = porosity of sediment; t_ =
critical bed shear stress of sediment; and ¢ = angle of repose



Gravitational Theory of Suspension

Velikanov’s Theory

* Principle of energy conservation is applied

* Velikanov (1958) expressed the energy balance equations as E; =
E, + E. for water phase; and E, = E, for sediment phase

E, and E, refer to the amount of energy supplied by the water and
sediment phases, E, and E, denote the energy lost in the water and
sediment phases to overcome frictional resistance, and E. stands for
the amount of energy needed to maintain the suspension

* For two-dimensional uniform flow
E, =pg(1-C)usS (4.76)
E, =pgCuUsS (4.77)

E; :—Ud—sz—[a—c_:)W] (4.78)



d
Eq =pst(CUW) (4.79)

Es =(ps-p)9(1-C)Cwg (4.80)

where w,, = fall velocity of a sediment particle in still water of infinite
extent

* Velikanov assumed the fall velocity of a sediment particle in flowing
water is w - w,

* The continuity equation for sediment passing through a unit area
located at a distance z from the bed

C(W—Wg)=0 (4.81)
* Continuity equation for water is
w(1l-C)=0 (4.82)

* |f the instantaneous value is expressed as the sum of the time
averaged and the fluctuation values

WC —Cwg +WC'=0 (4.83)

W-CW+WwC' =0 (4.84)



Adding Egs. (4.83) and (4.84) yields
W = CWe (4.85)

* Substituting the related energy terms into the energy balance
equations

g(1-C)usS = di[(l CHuw']+Ag(1-C)Cwg (4.86)

gCS = —(C uw) (4.87)

where A = s—1; and s = relative density of sediment particles, that is
pJ/P
* Velikanov suggested the logarithmic law of velocity distribution

0.5
:“"‘h{nzj: (ghS) ln(1+§) (4.88)

K Ay K o

where A, = parameter depending on the bed roughness; and a = A /h



Dividing Eq. (4.86) by 0 and adding it to Eq. (4.87)

h h C\C
[gSdz = jiu 'Wdz + AQWq j( S)C dz (4.89)
; ;02 u

After integration

—gS(h—2) =u'W + Agwq, jﬂ (4.90)

* The second term of the RHS is much smaller than the first term and
can be neglected

du'w’

=08 (4.91)

uw'=—-gS(h-2)=

* For small concentration, 1 — C = 1 and the substitution of Egs.
(4.88) and (4.91) into Eq. (4.86) yields the differential equation for
concentration distribution

ac _g dé
C (-&n[l+(Ew)]

where B, = Axw,_/[S(ghS)%%]

(4.92)




* \Vertical distribution of sediment concentration is obtained from Eq.
(4.92)

CEGZGXP(_BVCV) (4.93)
&
S — (4.94)

o (1-8)In[1+(&/a)]

* Shortcoming of the gravitational theory is that the energy balance
equation is not scientifically sound

* Energy for suspension E. comes from the energy of turbulence that
functions as the energy loss of the flow in order to overcome
resistance

* |n energy balance equation, that part of the dissipated energy
should not be taken into account two times



Sediment Suspended-load by Gravitational Theory

Velikanov’s Approach

* Velikanov (1958) assumed the sediment concentration is small,
thatis 1 — C = 1, and integrated Eq. (8.86) over the flow depth

h h
guSdz = jUiu’w’dz + [ AgCwqdz (4.95)
o dz 0

S —

* In the above, -u'w' = t/p. Since 1 ~ U2

h 3
[oU—u'wdz=bU (4.906)
0 dz

Eqg. (4.95) is integrated, simplified using Eq. (4.96)

;mcadgss 1 (4.97)

where A = ghS/U?; and C,, = depth-averaged concentration



* For clear water flow, C,,= 0, and from Eq. (4.97)

b=2% (4.98)
* For maximum sediment carrying capacity of the flow

A=Ay (4.99)

* The value of the ratio A,/A, is approximately taken as constant.
Substituting this ratio into Eq. (4.97) yields

CayWss 11— Ao
us A

A (4.100)

C,y is considered to be saturated depth-averaged concentration

* The depth-averaged velocity can be given by

h h 0.5 0.5
U =%judz _ ((9hS) ln[1+Aijdz _ ¢, 9" (4.101)
0

0 K v K

where ¢, = (1+a)[In(1+a) — 1] = fla)



Substituting Eq. (4.101) into Eq. (4.100) yields

KCayWes 1_ Ao

A =
¢;S(ghS)% Ak

(4.102)

The above equation is therefore given by B,C,, /c; =1 - A /A, =
constant

— Cl K2U 3

C., ~—-L_— 4.103
av By Af 2(‘1)§th\/55 ( )

The general form of the above equation

- us

C, =K 4.104
o ghweg ( )

where K = constant to be determined experimentally

* Researchers of Wuhan Institute of Hydraulic and Electric Engineering
(WIHEE 1961) made an extensive analysis of field data and concluded
that Eq. (4.104) should be modified as

. TE i
C. =K (4.105)

ghweg
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Fig. 4.5 Variations of K (in kg/m?) and m, with U3/(ghw_,)



Bagnold’s Model for Suspended-load Transport

* Bagnold (1966) investigated the suspended-load transport using
the same method that he used for the bed-load transport

* The rate of suspended sediment load g, (in submerged weight) can
be expressed as

Oss =WsUs (4.1006)

where Uy = depth-averaged velocity of the suspended-load, and W =
total submerged weight of suspended sediment in the column

* The amount of flow potential energy used to sustain the bed-load
motion equals the work done for sediment suspension can be
expressed as

WsWgs = 10U (1 -6y )€ (4.107)

where e, and e, = efficiencies for bed-load and suspended-load
transport



* Combining Egs. (4.106) and (4.107)

Jss = ToU U—S(l—eb)es (4.108)
Wss

* Since suspended sediments move with the same velocity as the
flow

1 h
[Cudz (4.109)

Ug =——
h—a;

Here a refers to the lower boundary of the suspension zone to the bed

* Since the velocity increases and the sediment concentration
decreases with z, 0 is generally smaller than depth-averaged velocity
U

* Ifr=05/U<1, then Eq. (4.108) can be written

U
Oss = ToU W—r(l—eb)es (4.110)

SS



* The suspended load g, (in weight) transport rate is

sU
= 10U r(l—ey)e 4.111
O0s =T AW, ( b)€s ( )

* Bangnold reviewed the laboratory data and obtained (1 - e,)e, =
0.01

* The suspended-load rate is

sU

=0.01tyU
Os 0 AWSS

(4.112)




Mixing-Length Model for Suspended-Load Transport

Z

C+AC\ Ay '
ANl

N Sl
C-AC Qg

Fig. 4.6 Sediment suspension in turbulent flow

* Following the concept Prandtl’s mixing length theory, fluid and
sediment are transported from lower level [ where the (volumetric)
concentration of suspended sediment is C - AC up to a height level //
where the concentration is C + AC

* The fluid (volume per unit time and area) transfers up through the
section AA with the amount of sediment g,

dy Z(W’_Wss)(c_lz'(ii(z:j (4.113)



* Analogous to Eq. (4.113), the downward sediment transport q, is

, | dC
qd :(W +WSS)(C+2.de (4114)

* In case of a steady flow situation, g, and q, are equal

Wl dC _

CWee +
B2 dz

0 (4.115)
* By assuming w'l/2 = Be J and using Eq. (4.23)

z\dC
Cw UsZ| 1—— |— =0 4.116
ss T KB ( h) dz ( )

* Integrating, the vertical distribution of the concentration is obtained

_ Cp
(S:(h £ @ ) (4.117)
a

Z 'h—a



Total-Load Transport

* The amount of sediment that passes through a given river reach for
given conditions of the flow and boundary is termed total-load

* Total-load is the sum of the bed-load and suspended-load
* Two general approaches to determine the total-load
e Separate estimation of bed-load and suspended-load

* Determination of the total load function directly without dividing it
into bed-load and suspended-load



Indirect Estimation of Total-Load Transport

Einstein’s Approach

Einstein (1950) advanced the bed-load and the suspended-load
concept for the estimation of total-load

* The total-load transport g, of a given size fraction i, is

19t =ip9p +159s (4.118)

where g, and g, = bed-load and suspended-load transport rates,
respectively; and i, and i, = particle size fractions of bed-load and
suspended-load transport rates

* Using Eq. (4.64) into Eq. (4.118), the total-load transport g, of a
given size fraction i, is

19t =ih9p 1+ Pely +15) (4.119)



Bagnold’s Modified Approach

* Bagnold (1966) considered the relationship between the rate of
energy available to a fluvial system and the rate of work done by the
system in transporting sediment

T()S
= Ue 4.120
Op \tan ¢ b ( )

where 1, = bed shear stress; A = s— 1; s = relative density of sediment
particles, that is p /p; p, = mass density of sediment; p = mass density
of fluid; ¢ = angle of repose; and U = depth-averaged flow velocity; and
e, = efficiency for bed-load transport

* Using the expression of suspended-load transport rate g, the total-
load transport of g, (=g, + g,) is

gtJOSU( % +o.o1ij (4.121)
A \tan@ Wqq
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Fig. 4.7 Variation of bed-load transport efficiency
e, with U for different particle size d



Direct Estimation of Total-Load Transport

Graf and Acaroglu Approach

* Graf and Acaroglu (1968) used hydraulic radius R, to develop a
shear intensity parameter y , as transport criterion

g, = A0 (4.122)
SRy,
* Based on a work rate concept, a transport parameter was established
CUR,
Op= (4.123)

where C = volumetric concentration of the transported particles

Using experimental data of different investigators, Graf and
Acaroglu (1968) obtained the following empirical relationship between
®,and y,

10.39
= ‘Pﬁfz (4.124)

Oa



Calculations

Calculation of Hydraulic Parameters:

h 4
\ v |
\/\\/\/\]}_f_/
> Q
(2) (b)

Fig. 4.8 (a) Schematic of a channel section
and (b) stage discharge curve

h ) Percentage
A finer

A A, P, R, log scale

(a) (b)

Fig. 4.9 (a) Channel characteristics curves and (b)
particle size distribution curve



1. For a given channel section, the stage discharge curve (h versus
Q), the channel characteristics curves (h versus area A, wetted
perimeter P and hydraulic radius R,) and the particle size distribution
curve are given. The streamwise bed slope of the channel S is also
known

2. Assume different values of Ry to cover the entire discharge Q..
Calculate ui = (g R{, S)°°
Calculate 6 = 11.6v/ us

Find k, = d. from particle size distribution curve

Calculate A, = k/x
Calculate U = ux 5.75 log (12.27R}, /A,)
Calculate ¥ = Ad/( Ry S)

3

4

5

6. Find x from Fig. 3.3 (curve x versus k/5)

7

8

9

10. Find U/ui from Fig. 4.10 (curve Ulus versus ¥)
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Fig. 4.10 Dependency of Ului on ¥



11. Determine ui (shear velocity due to channel irregularities such as bed
forms)

12. Calculate Ry from ux = (g Rj S)0°

13. Calculate R, = Ry+ Ry

14. Calculate u. = (gR,S)%>

15. Find flow depth h form channel characteristics curves

16. Find flow area A form channel characteristics curves

17. Find wetted perimeter P form channel characteristics curves
18. Estimate flow discharge Q = UA

19. Determine the characteristic distance X: X(A,/6 > 1.8) =0.77A, and
X(AJ5<1.8)=0.775

20. Determine the lift correction factor Y from Fig. 3.5

21. Calculate B, =1log(10.6X/A,)

22. Evaluate (B/B,)?, with f = 1og(10.6)

23. Calculate Einstein’s transport parameter P.: P = 2.303log(30.2h/A,)



Calculation of Total Load:

24. The representative particle size d is know from the particle size
distribution curve given in Fig. 4.9(b)

25. The corresponding fraction i/, is obtained from the ordinate scale
of Fig. 4.9(b)

26. For d/X, find the hiding factor & from Fig. 3.4
27. Calculate ¥. = £YY(B/B,)?

28. Find @ from Fig. 3.6 (curve Y. versus O)
29. Calculate i,g, = i,®A%">p gl°>al>

30. Calculate i,G, = (i,9,)P, bed-load rate in weight per unit time for
a size fraction for entire cross section

31. Calculate 2.i,G,, bed-load rate in weight per unit time for all size
fractions for entire cross section

32. Calculate E = a/h with a=d;
33. Calculate £ = w /(i ux)



34. Find/ and [, from Egs. (4.60a) and (4.60b) by numerical
integration

35. Calculate ig,=(1+ Pgl, +1,)

36. Calculate i,G, = (i,g,)P, total-load rate in weight per unit time for a
size fraction for entire cross section

37. Calculate 2.i,G,, total-load rate in weight per unit time for all size
fractions for entire cross section

Thank You



