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* When the flow over a sedimentary bed exceeds the threshold value,
the bed does not remain stable but takes different features known as
bed-forms

* The shape and size of the bed-forms depends on the flow
characteristics

* Bed-forms significantly influence on various flow parameters



Types of Bed-Forms

* For the purpose of the classification of bed-forms, three flow
regimes are distinguished according to the flow Froude number F [=
U/(gD,)°>, where U = depth-averaged flow velocity; g = acceleration
due to gravity; D, = hydraulic depth, A/T; A = flow area; and T = top
width of flow]

» Lower regime for F < 1; e.g. ripples, ripples on dunes and dunes
» Transition for F ~ 1; e.g. washout dunes

> Upper regime for F > 1; e.g. plane beds, antidunes, chutes and
pools



Fig. 5.1 Schematic of bed-
forms: (a) Ripples; (b)
ripples on dunes; (c) dunes;
(d) transition or washed out
dunes; (e) plane bed; (f)
antidune standing waves;
(g) antidune breaking wave;
and (h) chutes and pools

(d) (h)



Ripples

mm—

* Small triangular sand waves with long gradual upstream slope
(approximately 6°) and short steep downstream slope (approximately
32°) are called ripples

* In case of fine sediments (d., < 0.7 mm), ripples are formed, while
coarse sediments usually form dunes

* Ripples are formed if viscous sub-layer is present when the
threshold shear stress is just suppressed

* Length of the ripples depends on the sediment size and the flow
velocity, but is essentially independent of the flow depth

* Ripples may be superposed upon the upstream side of dunes



Dunes
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* Dunes are the bed-forms larger than ripples, whose profile is out of
phase with the free surface profile

* The streamwise profile of a dune is roughly triangular with a mild
upstream slope and a downstream slope approximately equal to the
angle of repose

* Flow separation that occurs at the crest of a dune reattaches in the
trough, so that bottom rollers are formed on the lee side of a dune

* Near the zone of reattachment, the sediment particles are
transported by the turbulence, even when the local bed shear stress is
below its threshold value



Transition and Plane Bed

* For increased stream power (product of the velocity and the bed
shear stress), the dunes tend to wash out and they become
progressively longer and flatter and finally disappear

* This change from dunes to plane bed means a rather drastic
reduction of both hydraulic resistance and flow depth



Antidunes

* Bed and the free surface profiles are in phase

* The streamwise bed profile is nearly sinusoidal and so is free
surface profile, but usually with much larger amplitude

* Atlower Froude numbers, antidunes appear as standing sand wave

* At higher Froude numbers, the sand wave may grow becoming
unstable and breaking in the upstream direction

* |f the latter occurs, the antidunes are destroyed, the bed becomes
flat, and the formation of antidunes starts all over again



Chutes and Pools

* Extremely strong antidunes actively lead to chutes and pools flow,
which occur at relatively large slopes with high flow velocities and
sediment concentrations

* They consist of large elongated heaps of sediment

* Shooting flow on the heaps of sediment runs into a pool where the
flow is generally tranquil



Instability of Sand Beds

Objectives

« To develop a new theory of turbulent shear flow over a wavy bed
using the Reynolds averaged Navier-Stokes (RANS) and the
time-averaged continuity equations addressing:

(1) The characteristics of free surface profiles over stable sinusoidal
sand beds

(2) The instability criterion of erodible beds leading to the formation
of sand waves



Free Surface

Sand-bed
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Figure 1 Definition sketch of flow over an undulating sand-bed



For erodible sand-bed, the bed elevation of sand wave h = h(x, t)
The elevation of wavy free surface profile n = n(x, t)
The mean flow depth D is constant

The instantaneous velocity components (u, v) at a point Q(x, y) is split into
time-averaged part (U, v) and fluctuation part (u’, v') as

u(x, y,t) =u(x, y,)+u'(x, y,t), v(x,y,t) =v(x,y,t) +V'(x,y,t) (1)

The continuity equations for (U, v) and (u’, V') are
ULy, LV (2)
ox oy ox oy




« The exact RANS equations of 2D turbulent flow are
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where P(x, y, t) is the time-averaged hydrostatic pressure relative to mass

density of fluid p, t(x, y, t)is —u'v’ that is the Reynolds shear stress relative
p, v is the kinematic viscosity of fluid and g is the gravitational acceleration

Egs. 2 - 3b form an undetermined system, since there are six dependent
parameters (u, v, u’, v, Pandt)



Turbulence Assumptions

» The gradients of the Reynolds stresses along x are nearly zero. Thus

ot/ex~0, OU?)/ex~0, d(V"?)/x~0 (4)

The second assumption is on the law of variation of z with y in turbulent flow

- A single averaged distribution of # is assumed following the 1/p-th power law,
where p is usually taken as 7 for the turbulent flow over a rigid boundary.

Thus 1/p
__ y —h
S PR 0
n-nh

where U, is the maximum velocity aty = n

» Atheoretical approximation by the power law may be sought in turbulent
stresses that dominate the viscous stresses in Egs. 3a and 3b. Thus

uazu_/ayz‘<<|81/6y|, v o’V /ex?| << |ot/ex|~ 0 (6)



 For a slowly varying variable, { = (y — h)?, where p > 1. Sincey —h =
CP and dy = pCP-tdE, the first condition in Eq. 6 becomes

‘621/7/8§2|<< (pCP' v)|o/ag| (7)
so that
|025/8§2‘ <g < (pd"/v) min{ov/a)} with €238 (8)

where ¢ and & > 0 are small constants

« The left hand side of the above inequality implies that — < d?u/9(2 < &,
whose appropriate solution is

0= A(X,t)+ B(x,1){ +0e{* with {>8and -0.5<6<0.5 9)
where 0 is an uncertainty function. As # — O for{ — 0, A(x,t) =0

« Setting B(x, t) = Uy(x, t)/(n—h)YP and dropping the uncertain small term

containing Og, one gets # in the form of Eq. 5, that remains valid for { —
Oory—h



* In Eq. 5, the term U, represents the maximum velocity at a flow section,
which can be related to the depth-averaged velocity U(x, t) as

|
U(x,t)z—jLTdy =LU0(x,t) (10)
n-—h; 1+ p

- Thus, using Eq. 10, Eqg. 5 can be written as a function of U as

1/ p
LT=1+pU(x,t)(y_hj (11)
p

* The continuity equation, Eq. 2, then yields

(+p)/p

_ oU|( y—h 12

V= —h ( )
. )@C(n—hj




Flow Assumptions

» The free surface profile possesses a curvature with insignificant
streamwise gradient. It implies that as |0h/ox| = 0, |on/ox| = 0O

By Eq. 2, the advective vertical acceleration is

7V 7P g g _pony) g

Ox oy Ox ox Ox (13)

where tany is the slope of a streamline through the point Q (x, y) and x is

the curvature of the streamline through the point Q, such that x(h) = 6°h/ox?
and x(n) =~ 0°n/ox?

« Following the Boussinesq theory, one can assume a linear variation of

between the curvatures k(h) and x(n) at levels h and n (thatis h <y <n),
respectively, so that

€ = k() + [x() =~ k(D)2 (14)



With this value of x in Eq. 13 and u given by Eq. 5, Eq. 3b is integrated
with respect to y and the resulting equation is

2 (2+p)/p
P =P, +g(n-y)-U(n-h) ”pj{ : um“—y‘“j —1}

5 y—h (2+p)/p _
+ [1e(n) = ()] [—j —1} -V (15)

2(p+1)

where P, is the value of P aty = . The above equation yields 6 P/ox,
noting that the contribution of v'? is negligible due to negligible variations of

turbulence stresses, as given in Eq. 4

The expression for 8 P/ox is used in the momentum equation, Eq. 3a



Depth-averaged Equations

 Taking the depth-averaged continuity equation, Eq. 2, and using Eq. 10,
one can write

Dy Dh
Dt Dt

T] _
w8 o . oh
:V‘E - —dy:——[(n—h)U]Jru(XaT],f)——U(Xahaf)—
Ja T e o

where D(-)/Dt = o(-)/ot + u o(-)/ox. Eq. 16 thus reduces to

(16)

0 0
~ (n - + = —hyU 1= 17

« For depth averaging Eq. 3a, from Eq. 15 one gets

% M. 0l y2m_hy P
hja—d g(n—h)a—xwa—x{u (m~—h) K(n)+2(p+1)‘<(h)} (18)

where y = (p + 1)?/[p(3p + 2)].



 Similarly, for the advective acceleration by partially integrating the third term
of the left hand side of Eq. 3a using Eqgs. 2 and 11, one gets

¢ ou ol 0
G Ll sl - L -mU 1+ L (74
!(ar Y Gy:] Y [(n i, !” Y
Z—[(ﬂ—h)U]JrGa—[(ﬂ—h)U] (19)
where ¢ = (p + 1)2/[p(p + 2)]

* Using Eq. 4, the integration of Eq. 3a with respect to y, yields

é B g B E N2 72 P
8t[(n nU]+o 8x[(n nU]+vy ax{(ﬂ h)y"U {K(ﬂ)ﬂLz(pH)K(h)}}

g U
te=m— +gn i)

(20)

where n is the Manning roughness coefficient



* Reynolds stress t(y) vanishes aty = h and n. The bed shear stress 1, is
represented in Eqg. 20 by applying the Manning equation locally as pu.?
= 1, = pgn?U?(n — h)¥3; where u_is the shear velocity at distance x

+ Differentiating of Eq. 20, one obtains an alternative form of Eq. 20

ou P N 2| o) p ox(h)
o HEoT G rem DI ey =Y { X 2(p+l) ox }
p 0 o, U
2 | [-AU]+g 2 =0
+7U{K(n)+2(p+1)1<( )Lx[m T 21)

« EQ. 20 or 21 can be viewed a generalization of the Saint Venant equation,
considering 1/p-th power law of velocity and the curvature of streamlines

« For application of Eq. 21, p= 7, yieldingc =1 and y = 2/5

* In these approximations, the coefficient of the second term of the left hand
side in EqQ. 21 is unity, while the third term becomes negligible



Free Surface Profiles Over Stable Undulating Sand-Beds

 For steady flow over an undulating sand-bed, the flow depth h and the
depth-averaged velocity U are invariant of t; and continuity equation yields

(m-hU =g (22)

where q is the discharge per unit width. Eliminating U from Eq. 21 with the aid
of EqQ. 22, yields the differential equation of the wavy free surface profile as

dn 5 q'—g—h)' dn 7a’3h+ 5 a5 an’

0
& 207 (=hy  dx 16 de  2m—hy d 2 m-ny® = @3

* If the bed has a sinusoidal form as h = a sin(kx), where a is the amplitude
and k is the wave number, Eq. 23 in nondimensional form is given by



d'f 5 F’-[l+o(@-sin®)] dij 7 o5 2 5 cos X
dx> 2B° F’[l+a(fq-sinX)]? dx 16 2B [1+ a(f —sin X))’
5 o 1
‘I‘—' y :O
2 of’ [l+a(fj—sinx)]’"” (24)

where

is the nondimensional amplitude of bed-form (= a/D)

Is the wave number with respect to mean flow depth (= kD)
is the Froude number [= g /(gD3)°-°]

is the bed characteristic parameter (= n2g/D1/3)

is the nondimensional horizontal distance (= kx)
is the nondimensional vertical distance [= (n — D)/(aD)]

J)R) '6 -an

* Atypical numerical experiment was conducted fora. = 0.1, 3 =13, F =
0.2 and ¢ = 4x10-3. Eq. 24 was solved by the Runge-Kutta method

* A satisfactory solutlon was obtalned for the initial values of N=0.8,
didi =-0.71 and d*f/ dx * = —0.002 at the originX = 0
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Figure 2(a) Nondimensional free surface
profile fora =0.1, 3 =13, F=0.2 and ¢ = 4x10-3

« The wavy free surface profile computed is shown in Figure 2(a). It is
evident that the spatial lagis x=3



* In another numerical experiment, the value of B was reduced to 9.5
keeping the other parameters unchanged. It means that the mean flow
depth D is reduced.

* A satisfactory solution wasAozbtained for the initial values of M= 0.8,
dn/dx =-1.41and d*fy/ dx -~ = —0.003 at the originX = 0



(b) ] Free Surface profile
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Figure 2 (b) nondimensional free surface profile for
a=01,3=9.5 F=0.2and ¢ =4x10-3

* In Figure 2(b), the peaks of the waves definitely show periodic groups
of waves in heaving motion.



Formation of Sand Waves

* The total-load transport g, per unit time and width

n

Jr =qB+fu_0dy (25)
h

where

gg Is the bed-load transport rate
c is the concentration of sand suspension

« The total-load satisfies the Exner’s sediment continuity equation. It is

Oq+ oh 0 oh 0O
—=—1-py)——— le(x,y,)dy =—(1—-py)———[(M—H)C] (26
™ ( Po)at ath(y)y ( Po)at 6t[(n )CT (26)
where p, is the porosity of bed sand and C(x,t) is the depth-averaged
concentration given by

n
C(x,1) = #jc(x,y,t)dy (27)
n- h h



* Due to bed slope, modified bed-load gz equation of Meyer-Peter and
Mduller

3/2
oh
—8(s—1)gd | —2 D _0.047
0 = 8(s—1)g Ls_l)pgd h= } (28)
where

s is the relative density of sand

d is the median sediment and

p is the particle frictional coefficient (~ 0.1)

- The bed shear stress is obtained from Manning equation as 1, =

pgn2U?/(n — h)3. Sediment concentration ¢ has an advection-diffusion
equation of the type

Dc oc [ o%c 6zcj
—W, —+|e, —+¢

Dt °ay ox2 7 oy? (29)

where

w, is the terminal fall velocity of sand
g, IS the turbulent diffusivity in x-direction
€, IS the turbulent diffusivity in y-direction



* The diffusivities €, and ¢, are dependent on flow conditions. Thackston
and Krenkel (1967) estimated ¢, as

e =725uDU/u)"* =725¢" n’*UD"" (30)

* On the other hand, Lane and Kalinske (1941) estimated ¢, as

e, =u,D/15=0.066g"*nUD" (31)

 From Eq. 26, the quantity of interest is the depth-averaged concentration C

* Thus, using Eq. 2 into Eq. 29 and integrating between limits h to n, yields

1j“gdy . —[(n h)C] + — ju cdy (32)
Dt



« The integral of the right hand side in Eq. 29 equals

oc L o2c 02
W.C+¢g, — ———dy ~ ¢, —h)C 33
( yay) jax y = ey l(n=hC] (33)

* |n the above, the first term vanishes as there is no net vertical sediment
flux across the extreme levels aty = h and y = n. EqQ. 29 thus leads to

2
—[(n h)C]+a—[(n WUC] =&, -2 [(n-K)C] (34)
Ox >

« Using Egs. 25, 28 and 34 into the Exner equation, that is Eq. 26, yields

oh & { n2y> oh T‘S
(I=po)—+ex—5[M—MC]+12[(s - 1gd*1" —u——0.047

ot " ox? (n—-h)"*(s=1)d " ox

2 2 2
x 1'73 oyl 10U tan_ahj _Ma? = 0
(n—h) """ (s-1)d ox 3 m—-h{0ox 0Ox OX

(39)




« Egs. 17, 21 (with 0 =1 and y = 2/5), 34 and 35 constitute the equation of
perturbed flow due to erosion of bed

* In Eq. 21, k(h) = 6°h/ox? and k(n) = 0°n /0x? are taken.

To investigate sand wave propagation, the above set of equations to the
first order is linearized as

on oh ouU on oh

———+D—+U_| ———|=0

ot o ox " ( ox  ox j (36a)

Ny Y, 2py0 8311+ 7..0°h +g8n+gn2Un2,, =0 (36Db)

ot " ox 5 "l ox® 16 ox’ OX D3

oC oC oU 0°C

—+U_ —+C,—=c¢ 36C

ot "ox Y ox X x> (36¢)
oh 0*C n*u U 1 U, (on ahj o*h

1- — D——+G m 2 __.,m _ —_u=——l=p

( pO)at+8X x| {(s—l)dD”{ x 3 D (ax ox)| Mo (36d)

where G is 12[n?gd?U, D13 — 0.047(s — 1)gd3]°® and C, is the initial
average concentration that may occur due to mean flow velocity U_,.



* If an exponential distribution of C, is assumed with €, given by Eq. 31,
the average concentration C; is

C, =4.853x107*[(g’n*U}) (w!D*")] (37)

» For propagating wave type solution of the linear system of differential
equations [Eqgs. 36a - 36d with Eq. 37], the solution must be of the form

(n, h,U,C)=(E,H,U, C)exp( —At) exp( ikx) (38)

where it is imperative that Re()) > 0 for bounded waves to propagate.
Here, Re()) denotes the real part of A

* In this case, moving wavy bed-form is h = exp[-Re(A)t] exp{i [kx — Im(X)t]}
and the flow variables remain bounded for t > 0, where Im(A) denotes the
imaginary part of A. However, for t —» oo, the return to zero value of h is

physically inhibited by weakening erosion process, resulting in wavy
bed-forms for all times



By substitution of Eq. 36b, noting that the constant term (last term) in Eq. 36b
has no role in such a stable solution analysis; the following linear algebraic
equations are therefore obtained:

(A +ikU YE —H)+ikDU =0 (39a)
8i(5kg —2k’DU ) E - 7ik’ DU 2 H +40(-A +ikU U =0 (39b)
ikC,U +(-A+ikU . +¢,k*)C =0 (39c¢)
—(1—p0)xH_—ngk26+G{(S!‘T;:Dmm [ZDLT—éUm(E— H_)}usz_}: 0 (39d)

« Eliminating E, H, U and C from Egs. 39a — 39d, one gets the quartic
equation for A:
n*k’U
(5—1)dD"”

(L —ikU_ —sxkz){[(l—po)%—ukz}{(k—ikUm)2 +k2D(—%Dkzu; + gﬂ+

7. 23 5 s k‘C,D . . ( 23 5 ) j
2h——ikU_ | ——Dk“U:Z + — A—1kU ) ——DkU: +qg |=0 40
(2200, |- Zocvi -2, K9P0 nu, (- Zocuzo)-0 o



« For formation of sand waves, the real parts of all the four roots must be

positive

* In terms of nondimensional quantities as X = A(D/g)°>, = kD,
F., = U, /(gD)°>, @, = Do/[(s — 1)d ], ¢, = 0.083/ [(s — 1)(F,2p, — 0.047)]°>,
e =g, /(gD3)°°=7.25¢%®F , and C, = 4.853x10-4(F, %/¢?)(u,/w,)* Eq. 40 can

then be written as a quartic equation of X. It is
. 2 X 2 . 2 2 2 2 172
(_X+ZBFm+8B ) (l_po)(p__HB (X_IBFm) +B _gB Fm +1
A

2 _Z- _é 22 C0B2 o _é 22 _
+0,p Fm(ZX 3IBij( 40'3 F +1j}+8 0. (X IBFm)( 4OB F +1) 0 (41)




« Parameters are selected as ¢ = 2.5x10-3, ¢,= 600¢ and u_/w, = 0.6 for
the computation of the four roots of X for different values of wave

number 3 and Froude number F

« |t transpires that all four roots have positive real parts when the points (f,
F.) in the B-F, plot lie in a curved band forming a zone in which bed-
forms remain unstable without becoming unbounded in

« This zone, where significant sediment transport takes place as bed-load
and suspended-load, contains the experimental data of antidunes and
standing waves, having higher values of F., (> 0.8). The zone shrinks to
an asymptotic critical line at F, = 0.177, when 3 becomes large. Below
this theoretical value no root of Eq. 41 exists and bed erosion is inhibited

due to significant reduction of flow velocity

» If C,is set equal to zero, the transport process is due to bed-load only.
In this case, the lower boundary of the unstable zone degenerates into
the asymptotic line F, = 0.177, that is the lower limit for dune formation



Experimental data on standing wave

Experimental data on dune

| DAG Guy et al. [32] ¢ Tison [29]
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Figure 3 Stability of sand waves for ¢ = 2.5x10-3, ¢, = 600¢ and u_/w, = 0.6
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 Two basic equations obtained (Eqgs. 17 and 20 or 21) can be regarded
as the generalization of the Saint Venant equations of motion. In shear
flow over a stable sinusoidal sand-bed, the free surface profile lags the
bed profile, and when the flow depth decreases an accumulation of
heaved waves in the free surface is formed

* In case of instability of a horizontal plane sand-bed, at higher Froude
numbers F_, (> 0.8), the bed-forms remain unstable as standing waves
and antidunes, while at lower F_, (with no suspended-load ), the instability
zone is extended to the lower limit of F, = 0.177



Mechanics of Dunes
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Fig. 5.2 Streamwise profiles of dunes

* Assuming that the bed waves are traveling at a constant velocity a
without any change in shape

* Shape of the bed is described by an expression of the form
h=h(x—at) (5.1)

where h = local height of the dune above an x-axis passing through the
troughs



* Consider the bed-load of sediment g through two consecutive
sections with unit spacing in the x-direction

* Net outflow of sediment is 0qg/0x, which is equal to the change in
bed elevation when the correction for the porosity p, of the bed
sediment is taken into account

* Change in the amount of sediment stored in suspension is ignored

* Sediment continuity equation (Exner equation) is

an oh

B _(1—pn)— 5.2
e (1-pp) po (5.2)
* If Eq. (5.1) is substituted into Eq. (5.2), they are satisfied by putting

Jg =0g(X) =0y +a(l—pgy)h (5.3)

where g, = a constant, interpreted as the value of q; at h = 0, that is at
the trough the bed-load is zero



* For small bed shear stress, g, becomes zero, because the
sediment mainly moves as bed-load and so gz becomes g,

* The following relationship is obtained
Op = a(—po)h (5.4)

* ltis evident that the local intensity of bed-load transport is
proportional to local height of bed above the plane through the troughs

* Bed shear stress at the dune surface must vary from zero at the
trough to a maximum at the crest

QuAl —

T\

—] k=
aAt

Fig. 5.3 Migration of dune front
* Migration velocity a of the dune

_ Jg
7 (1-pg)hy (5:)

where h, = dune height, g, = amount of sediment deposited




* From Egs. (5.3) and (5.4), it is seen that for small bed shear stress,
g, becomes same as q,

* The shape of the bed-form can be found from Egs. (5.4) and (5.5),
combining them as

h_ % (5.6)
hd qb‘top

where qp|. = sediment transport at the dune crest level where h = h
b top d

* The modified bed-load equation of Meyer-Peter due to bed slope is
given by

(5.7)

®. oh T/z
— =0
tang OX

dp =8 Agd3(®—

where d = representative particle diameter; g = acceleration due to
gravity; A =s —1; s =relative density of sediment particles, that is
p/p; ps = mass density of sediment; p = mass density of fluid; ® = local
Shields parameter, u,?/(Agd); u. = shear velocity; ®_ = threshold
Shields parameter; and ¢ = angle of repose of bed sediment



* Inserting Eq. (5.7) into Eq. (5.6) yields
2/3
®
1 .@h+ top _4 h :g_l (5.8)
tanp Ox | O hy O
* Due to the presence of the dunes, the local flow depth varies along

the dune, which results in spatial changes to the depth-averaged flow
velocity U, which varies along the dune

U(D+0.5hg —h)=q (5.9)
where g = flow discharge per unit width

* Bed shear stress along the dune given by

2
X U
Tg :Tt‘)pf(hd j{Ut J (5.10)
op

* Egs. (5.9)and (5.10), yields

2
X D —0.5h
®.=0, f d 5.11
¢ top (hdj(D-l-OShd—hj ( )




Dune Height

* The dune height can be obtained from the geometrical consideration

* Combining Egs. (5.1) and (5.5), gives

oh . oh B OF oh

T g : (5.12)
ot oX  (1-pg)hg ©OX

* Combining Egs. (5.2) and (5.12)

0gg _ dg oh (5.13)
oX hy OX

* Eq. (5.13) can also be written

obg _ Py oh (5.14)

ox  hy ox

where @5 = nondimensional sediment transport rate



* In steady flow, @ is a function of Shields parameter ® and hence
00, 00 _ @, oh

= (5.15)
0® ox h, OX
* Atthe dune crest, Eq. (5.11) is approximated by
2
D —0.5hy
O=0 5.16
wp(D4415m,—h) (5:16)

* 0, appearing in Eq. (5.16) is the Shields parameter due to the skin
friction, which can be related to the averaged skin friction @,

D —0.5hy )’

@w:@m{ S d) (5.17)
* Eq. (5.16) gives
(’9@: 2®top .@h (518)
ox D-0.5hy ox
* Eq. (5.18) combines with Eq. (5.14)
~ 15y , ©=0y, (5.19)

4®7+(Dd

de



Dune Len_gth

* The maximum bed shear stress is located around 16 times the dune
height downstream from the former crest

* The maximum sediment transport rate, except for very small
Shields parameters, occurs at the location of maximum dune height

* The equation of the dune length can be obtained from Eq. (5.6)
Ly =16hy (5.20)

* At higher bed shear stresses, where suspended sediment becomes
the dominant transport mechanism, the situation becomes a little more
complex because a spatial phase lag L, is introduced between the
location of the maximum bed shear stress and the location of the
maximum suspended-load transport

* The maximum bed-load and suspended-load transport can be
estimated

. 16q +(r|;3+16qu
d _ d (5.21)

ng Op +0s
where ¢, = suspended-load transport rate



Phase Lag of Suspended Sediment

* The phase lag L, is introduced because a sediment particle takes
some time to settle after being picked up from the bed

* The magnitude of L  can be estimated from the basic equation of
sediment suspension

L _, aC a( acj a( acj (5.22)

— Wee —+ | g + g
ox 2oz o\ °oz) ox\ ° ox

* In uniform flow, Eq. (5.22) can be solved giving

C _ exp(_ Wsszj (5.23)
Cho €g

where C,_, = nominal reference sediment concentration at the bed

* Concentration C,, varies in the flow direction, for instance, due to
spatial changes in the bed shear stress

* g, and u are assumed not to vary in the x-direction



* Because of the variation in C,,, the vertical distribution of the
suspended sediment deviates from the equilibrium profile given by Eq.
(9.23)

* The vertical distribution of suspended sediment is still described by
an exponential function introducing a steepness variable A as

L _ exp{—wss(l+k)z} (5.24)
Cho S

* Introducing Eq. (5.24) into the diffusion Eq. (5.22) and integrating
over the flow depth

€g 0 Cboj
u . = —ChaWee + ChaWee (1+ A 5.25
Wee 8X(1 2 b0OVVss b0 ss( ) ( )

* |tis assumed that the sediment concentration vanishes towards the
free surface, and the horizontal diffusion of sediment is neglected

* The variation in C, is taken to be a small perturbation, and Eq.
(5.24) can then be linearized to give the following differential equation
for the unknown parameter A



2
dr, Wi, 1 oChy _

0 (5.20)
dx ueg Cpy OX

* This equation can be solved for a given variation in C,,

* As an example a periodic perturbation of C, , is considered, giving a
variation of

CbO = CO + Cl SiIl(kX) (527)
* Introducing Eq. (5.27) into Eq. (5.25) and using that C, >> C;

0., A _Ck
dx LS CbO

cos(kx) =0 (5.28)

* InEq. (5.28), the length scale L is introduced

Ly =u—- (5.29)
Wss
* The solution to Eq. (5.26) is
Cik L :
A= : [cos(kX) + KL, sin(kx)]+ C, exp(—X/ L) (5.30)

 Cy 1+(kLy)?



* The vanishing transient part can be ignored, thatis C, =0

* For long wavelengths of the perturbation, the nondimensional
parameter KL is small, and Eq. (5.30) can be approximated

A= G KL cos(kx) (5.31)
Co

* The sediment transport rate g, can be found

—qudz_Cbou S- : ~Cb0 s (1-2)
Wss

{1 +— sm(kx)}{ gl KL cos(kx)}
0
{ —1 [sin(kx) — kL cos(kx)]}

~C0u {1+Clsm kK(x—L )]} (5.32)
Co



* For quasi-uniform condition, the suspended sediment transport rate

q [fc:udz Chol 25— = Cou =8 {1+ G sin(kx)} (5.33)
= =CpoU = =Cou—=- 14+ :
; 0 Wss Wss Co

* Comparing Egs. (5.32) and (5.33), it is seen that the development in
the concentration profile causes the sediment transport rate to have a
phase lag L, relative to the variation in the bed concentration

* The lag distance increases with a decrease in w_, and with an
increase in eddy viscosity ¢, or flow velocity u

* From Egs. (5.23) and (5.29), the length scale L can be given

a (5.34)

where z_ = height of the centroid of the concentration profile above the
bed (= ¢/w,,); and u\z = average velocity at an elevation z_

D
[Czdz

o=l (5.35)

[Cdz
0



Flow Resistance due to Dunes

* |n presence of bed-forms, the resistance to the flow consists of two
parts, one originating from the skin friction (or grain resistance) and
other due to the expansion loss downstream of a dune crest

* The magnitude of the latter loss can be estimated from the Carnot

equation

Uer —Uy)’
29

where U, = average velocity at the crest; U, = average velocity at the

trough; and K = coefficient due to flow geometry

Ah" = K (5.36)

* The average velocities U and U, are given by

g
Uy = 5.37
" D-0.5hy (5:37a)
Uy = 1 (5.37b)
D-I-O.Shd

where q = UD



* Therefore, Eq. (5.36) becomes

U2(hg)?
Ah" ~ q—| 4
o 20 ( Dj (5.38)
* The total energy loss J per unit length in the streamwise direction is
JzJ’+Ah =J'+J" (5.39)
Ly

where J' = gradient due to friction

* In a steady-uniform open channel flow, the total bed shear stress z,
is related to the energy gradient J by

* According to Eq. (5.39), 1, can be split into two parts
19 =pgDJ" +pgDJ" =1"+ 1" (5.41)

where t' = mean bed shear stress acting directly as a friction on the
surface of the dune; and 1"’ = form drag on the dune



* In nondimensional form, Eq. (5.41) can be expressed
P=0"+0" (5.42)

where ® = Shields parameter, t,/(Agd)®®; ® = DJ'/(Ad); and @' =
0.5a(Uh)?/(AgdDL )

\V4

-

Fig. 5.4 Schematic of boundary layer developed along a dune

* To calculate J’, an additional flow resistance equation for the skin
friction is required

* Immediately downstream the dunes crest a wake like flow is formed
producing large amount of turbulent energy

* This is dissipated into heat further downstream and thus causing
the expansion loss



* At the end of the trough, a boundary layer with thickness 6 is
developed, where the velocity gradient is large, while the velocity
distribution outside this layer is uniform

* Engelund and Hansen (1972) assumed that the upper flow and the
boundary layer flow are independent of each other in the sense that no
significant amount of energy is exchanged between them. Hence, the
energy gradient of the boundary layer flow is equal to that of the upper
layer and that of the total flow. It is

- U’ , pU2 uU?

— f = f 5.43
pgUD’ 2pgD’ 29D’ ( )

where U’ = average flow velocity in the boundary layer; and f' = skin
friction coefficient defined by

2
o = frPY (5.44)
2
* The expression of J is given by
2
jof Y (5.45)

29D



* Egs. (5.43) and (5.45) produce

f* f
R 5.46
575 (5.46)

* Egs. (5.45) and (5.46) gives

2 U
\/; -3 (5.47)

* The friction factor ' for the boundary layer is determined from the
equation of Nikuradse

2 _6+2.5In| 2 (5.48)
T k.

where k, = equivalent sand roughness of Nikuradse




e Asf=1fand D = D’, the value of the constantin Eq. (5.48) is 6
* Using Egs. (5.47) and (5.48)
U D’
=6+2.5In| — 5.49
/29D n(ksj (549)
* The above equation was originally suggested by Einstein (1950),

who obtained it as an analogy to his calculation of sidewall correction

* Combining Egs. (5.43) and (5.45), yields the important expression

T, = pgD'J (5.50)
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