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* When a stream flows over a loose sedimentary bed, hydrodynamic
forces are exerted upon the sediment particles at the bed surface

* Increase in flow velocity causes an increase in the magnitude of
hydrodynamic forces

* Sediment particles start to move if a situation is eventually reached
when the hydrodynamic forces induced by the flow exceed a certain
limiting value

* Initial movement of sediment particles is frequently called incipient
motion

* The condition being just sufficient to initiate sediment motion is
termed threshold or critical condition

* Threshold of sediment motion in open channels having erodible bed
is an important component of management of river systems
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* Often the distribution curve of sediments approaches the log-normal
probability curve when plotted as in Fig. 2.1(a)

* Distribution function is log-normal and is given by

2
_ 1 B ln(d/dSO)
f(d)—mdln(cg)exp 0.5{ In(og) } (2.1)

where o, = geometric standard deviation, given by (dg,/d ()0 dey =
median particle diameter or 50 percent finer (by weight) particle

diameter. For uniform sediments, oy < 1.4




Definitions of Sediment Threshold

First type of definition is based on sediment flux

* Shields (1936) put forward a concept of sediment threshold that the
bed shear stress has a value for which the extrapolated sediment flux
becomes zero

e USWES (1936) set a concept of sediment threshold that the tractive
force brings about general motion of bed particles. For sediment
particles less than 0.6 mm, this concept was found to be inadequate
and general motion was redefined that sediment in motion should
reasonably be represented by all sizes of bed particles and that
sediment flux should exceed 4.1x10-4 kg /sm




Second type of definition is based on bed particle motion

* Kramer (1935) indicated four different bed shear conditions for
sedimentary bed

" No particles are in motion, termed no transport

= Afew of the smallest particles are in motion at isolated zones,
termed weak transport

" Many particles of mean size are in motion, termed medium
transport

" Particles of all sizes are in motion at all points and at all times,
termed general transport

* Kramer (1935) pointed out the difficulty of setting up clear limits
between these regimes but defined threshold bed shear stress to be

that stress initiating general transport

* Vanoni (1964) proposed that the sediment threshold is the
condition of particle motion in every two seconds at any bed position




Competent Velocity Concept

* A competent bed velocity or competent mean velocity is a velocity at
particle level or mean velocity, which is just enough to move the
particles of a given size

* Goncharov (1964) defined threshold velocity as detachment
velocity U_, which was defined as the lowest average velocity at which
individual particles continually detaches from the bed for which the
mean value of the fluctuating lift force nearly equals the submerged
weight of particle in water

U, =log(8.8h/d)./0.57A gd (2.2)

where h = flow depth; d = representative particle diameter, that is
median particle diameter; g = acceleration due to gravity; A=s—-1;s
= relative density of sediment particles, that is p/p; p, = mass density
of sediment; and p = mass density of fluid




* Carstens (1966) reported an equation of critical or threshold
velocity u_, at the particle level having analyzed a large number of
published data on threshold of sediment motion as

u§r /Agd =~ 3.61(tan@cosO —sin0) (2.3)

where ¢ = angle of repose of sediment; and 6 = angle made by the
streamwise sloping bed with the horizontal

* Neill (1968) presented a conservative design curve for the
movement of coarse uniform gravel in terms of average threshold
velocity U_ and represented it in an equation

U2 /Aagd =2(h/d)"? (2.4)




* Zanke (1977) proposed the following equation
U, =2.8,/Agd +14.7¢c;v/d (2.9)

where c, = a coefficient for cohesiveness varying from 1 for non-
cohesive to 0.1 for cohesive sediments

* Many researchers have validly criticized the use of critical velocity
equation as a criterion for threshold of sediment motion

* Confusion regarding the competent velocity at particle level u, and
average velocity for threshold condition U,

* Hydraulicians accept a more satisfactory quantity, the bed shear
stress as a sediment threshold

* Yang (1973) developed a promising model for the estimation of
average velocity for sediment threshold




Yang’s Competent Velocity Model

Fig. 2.2 Forces acting on a spherical sediment particle at the bottom of
an open channel

Yang (1973) proposed a model on competent velocity

* The drag force F is expressed as

FD =Cng2pu§ (26)

where C, = drag coefficient; and u, = velocity at a distance d above
the bed




* The terminal fall velocity w , of a spherical particle is reached when
there is a balance between the drag force F, and submerged weight
F of the particle

T L
Cpig @ pugs = d°(ps —p)g (= F) 27)
where C, = drag coefficient at w_,, assumed as y,C,

T
Fp = 5 d*(ps —p)Qug (2.8)
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* Considering the logarithmic law for velocity distribution, velocity at
particle level u, and depth-averaged velocity U are as follows

U= U{S.75(logg—lj+ Br} (2.9b)

where B, = roughness function; and u. = shear velocity




Using Egs. (2.9a) and (2.9b) into Eq. (2.8), yields
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Fo =——d°(ps —p)Q : (2.10)
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* The lift force F, acting on the particle is given by
FchLgdzpug (2.11)

where C, = lift coefficient, assumed as C /vy,

Using Egs. (2.9a) and (2.9b) into Eq. (2.11), yields
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* The drag force F is balanced by the resistance force F,
Fp =Fr =v3(Fg —FL) (2.13)

where vy, = friction coefficient

Inserting Egs. (2.7), (2.10) and (2.12) in Eq. (2.13), one gets the
equation of average critical or threshold velocity U,

Ue _ \/"’1‘4’—2‘4’3{5’75(logh—lj+1} (2.14)
Wss Yo +V3 Br d

* Yang (1973) gave equations for both smooth and rough boundaries

Yo 25 066 for 0 <R, < 70 (2.15)
Wgs logR«—0.06
Ye _5 05 for R, > 70 (2.16)
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Lift Force Concept

* Lift force may arise for two reasons

"  Pressure difference due to a steep velocity gradient at the
bottom of channel

" Upward velocity component adjacent to the bed as a result of
turbulence

* Jeffreys (1929) showed that the classical-hydrodynamics provides
a simple explanation of lifting and carrying solid particles in fluid

* Assuming a potential flow over a circular cylinder with its major axis
perpendicular to the flow, lift takes place if

G+n2)U?% >9Agr (2.17)
where r, = radius of the cylinder

* The shortcoming of Jeffreys model is that the drag forces are totally
discarded




* Reitz (1936) discussed a similar idea and suggested to express the
beginning of sediment motion with a lift model

* Lane and Kalinske (1939) stressed on turbulence for determination
of lift and assumed

" Particles having a settling velocity smaller than the
instantaneous turbulent fluctuations at bed experience lift

" Velocity fluctuations vary according to the normal error law
" Turbulent fluctuations and shear velocities are related

* White (1940) carried out a single experiment and found that the lift
on an individual particle is very small compared to its weight

* Einstein and EI-Samni (1949) measured the lift force directly as a
pressure difference

fL =0.5C| pug 35 (2.18)

where f,_ = lift force per unit area of the particle; C, = lift coefficient
assumed as 0.178; and u, 5., = measured velocity of flow at a distance
of 0.35 diameter (equivalent) from the theoretical wall




* |wagaki (1956) worked on the problem of sediment threshold using
shear stress concept

* The results of the study of Einstein and EI-Samni (1949) were
used by Task Committee (1966), who calculated f /t_; where 1 =
threshold bed shear stress

* Chepil (1961) pointed out that, once the particle is displaced, lift
force tend to diminish and drag force to increase

* Coleman (1967) studied the lift forces acting on a sphere placed on
a hypothetical streambed and observed negative lift force for Reynolds
number less than 100




Threshold Shear Stress Concept

Empirical Equations of Threshold Shear Stress

* Kramer (1935) carried out experiments in a flume using quartz
particles of relative density 2.7

e =29/(ps —p)gd /M (2.19)

where where t_ = threshold or critical bed shear stress; and M =
uniformity coefficient of Kramer

* USWES (1936) recommended the formula
1. =0.285,/Ad /M (2.20)

* Leliavsky (1955) represented the threshold bed shear stress
with a simple relationship as

1. =166d (2.21)




Theoretical and Semi-Theoretical Analyses

Shields Diagram

Z A

Fig. 2.3 Forces acting
on a sediment particle
resting on bed

Shields (1936) was
pioneer to present a
semi-theoretical theory

* The driving force is the flow drag force F, exerted on the sediment
particle

2

where u = velocity at elevation z = a,d; A = frontal area of the particle;
and a, = particle shape factor

Fy =CDlpu2A= flﬁal,ﬂjpdzu2 (2.22)
A%




* Velocity distributions for flow over rough and smooth
boundaries have the form

Y 575108 % + 2 = 5.7510ga, + fz(u*dj (2.23)
AY% AY%

where k, = roughness height being proportional to d
* Drag force is
F, =1d°f,(a.a,,R.) (2.24)

* The resistance to motion F; was assumed to be dependent only
upon the roughness of the bed and the submerged weight F, of the
particle

Fr = asApgd” (2.25)

where a, = roughness factor

* At the incipient condition, when the sediment particle is about to
move, u. — u, (that is critical shear velocity), then drag force is
balanced by the resistance

Fo =Fgr (2.26)




Rearranging the terms

2
Ure __Tc _ f(Ry) (2.27)
Agd  Apgd

* The Shields parameter O is defined as
2

0= (2.28)
Agd

* The Shields parameter © is defined as

O, = f(Re) (2.29)
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* The Shields diagram has three distinct zones:

" Hydraulically smooth flow for R, < 2: d is much smaller than the
thickness of viscous sub-layer; and it was found that ®_ = 0.1/R.

" Hydraulically rough flow for R, > 500: The viscous sub-layer
does not exist. The critical Shields parameter ©, is independent of
the fluid viscosity and has a constant value of 0.06

"  Hydraulically transitional flow for 2 < R, < 500: Sediment
particles are of the order of the thickness of viscous sub-layer.
There is a minimum value of ®, of 0.032 corresponding to R, = 10




Drawback of the Shields theory are as follows:

* The viscous sub-layer does not have any effect on the velocity
distribution when R, > 70, but his diagram shows that © still varies
with R, when the latter is greater than seventy

* Shields used bed shear stress and shear velocity in his diagram
as dependent and independent variables, which is not appropriate
as they are interchangeable

* Threshold bed shear stress to be determined through trial and
error method




* van Rijn (1984) gave the empirical equations of the Shields curve

®. (D« <4)=0.24/Dx (2.30a)
®. (4 < D« <10) =0.14/ D (2.30b)
®.(10 < Dx £20) =0.04/ D! (2.30c)
®,(20 < Dx <150) =0.013D¢-*’ (2.30d)
®, (Dx >150) = 0.055 (2.30€)

where D, = particle parameter, that is d(Ag/v?)1/3

* Julien (1998) proposed the empirical equations of the Shields curve
O.(D«<0.3)=0.5tan ¢ (2.31a)
©.(0.3< D« <19)=0.25tane/D>®  (2.31b)
®. (19 < D« <50) = 0.013 tan oD (2.31c)
O, (D« >50)=0.06tan ¢ (2.31d)




White's Analysis

* If one neglects the lift force, at limiting equilibrium, the drag force
(shear drag) is balanced by the frictional resistance

High-Speed Case (Rt > 3.5):

* High flow velocity is required to move larger sediment particles,
where the drag due to skin friction is negligible as compared to the
drag due to pressure difference. If p; is the packing coefficient defined
by Nd?, where N is the number of particles per unit area, the shear
drag per particle (that is t,/N) is given by t,d?/ p;

* At limiting equilibrium of a particle resting on a horizontal bed, the
shear drag is balanced by the product of submerged weight of the
particle and the frictional coefficient tang

O, =g ps tan (2.32)

* White (1940) introduced turbulence factor T,, which is the ratio of
the instantaneous bed shear stress to the mean bed shear stress

O, :g psTs tang (2.33)




Low-Speed Case ( Ri < 3.5):

* Upper portion of the particle is exposed to the shear drag that acts
above the center of gravity of the particle

* Effect is taken into account introducing a coefficient o

O :gpf‘lf tan @

(2.34)

* He experimentally obtained p;a, = 0.34 as an average value




Wilberg and Smith Approach

* On a horizontal bed, the expression for the force balance equation
given by Wiberg and Smith (1987)

(Fe —F)tang =Fp (2.35)

* The submerged weight of the particle F, drag force F and lift force
F, are as follows

Fo :CD%puzAx :CD%rO[f2(z/zO)]AX (2.37)
1 1
FL=CL EP(U% ~Ug)A=Cy ETO[fz(ZT /29) - F2(25/20)1A, (2.38)

where V = volume of particle; A, = frontal area of particle; u = velocity
at z above bed; z, = zero-velocity level; u; = velocity at top of
particle; ug = velocity at bottom of particle; z; = height of top point of
particle from bed; and z; = height of bottom point of particle from bed

* Assuming the bed level is passing through the mid points (those
are the contact points) of the bed particles




Using Egs. (2.36) — (2.38), the following expression for ©, is obtained

_ 2 1 . tan @
Cpog f2(z/zy) 1+(FL/Fp)ctang

0, (2.39)

where a, = A d/V

* C, is a function of particle Reynolds number (Schlichting 1960), C,
= 0.2 and coso = [(d/k,) + z.]J/[(d/k,) + 1]

* For natural sands, z, =-0.02

* For smooth regime (R. < 3) and transitional regime (3 < R, < 100),
Reichardt’s (1951) equation of velocity distribution was used

* Forrough regime (R. > 100), universal logarithmic velocity
distribution was used
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Fig. 2.5 ©_ as a function of R, for different d/k




Equations of Other Investigators

* Kurihara (1948) considered the bed shear stress to be a sum of
time-averaged bed shear stress due to main flow and bed shear stress
resulting from turbulent velocity fluctuations

* Proposed the following empirical equations

@ (X, <0.1)=(0.0471og X, —0.023)/B, (2.40a)
®.(0.1< X, <0.25)=(0.01log X, +0.034)/B, (2.40b)
@ (X5 >0.25) = (0.0517log X, +0.057) /B, (2.40c)

where X, = 4.67x103[Ag/(v?B,)]*3d; B, = (M + 2)/(1 + 2M); and M =
uniformity coefficient of Kramer (1935) varying from 0.265 to 1

* Iwagaki (1956) considered the equilibrium of a single spherical
particle, placed on a rough surface

cot @
O = 2.41
¢ Eg \PS R ( )
where g, = empirical coefficient to take care of the sheltering
effect; and ¥, = function of R..




* Egiazaroff (1965) presented yet another derivation for ®_as a
function of R,

* He assumed that at threshold condition, the velocity at an elevation
of 0.63d (above the bottom of particle) equals the fall velocity w__ of
particle

0, = 1.33 (2.42)
Cpla, +5.7510g(0.63)]

where a_ = 8.5; and C, = drag coefficient = 0.4 for large R., and both a,
and C, increase for low R,




* Mantz (1977) proposed the extended Shields diagram

* Yalin and Karahan (1979) presented a graphical presentation of ©_
versus R.. It is regarded as a superior curve to the Shields Diagram
1 —

Yalin and Karahan
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0.01 0.1 1 10 100 1000 10000
R.

Fig. 2.6 Curves (O, versus R, ) of Mantz and Yalin and Karahan

* Soulsby and Whitehouse (1997) presented the threshold in terms
of the dimensionless particle size D, and avoid the trial and error

0.24

*

@p =—— +0.055[1—exp(~0.2Dx)] (2.43)




Probabilistic Concept

* The threshold of sediment motion is probabilistic in nature

* The concept gives the mean condition that there is a fifty percent
chance for a given particle to move under specific flow and sediment
conditions

* Gessler (1970) measured the probability that particles of a specific
size stay

* |t was shown that the probability of a given particle to stay depends
strongly on the Shields parameter and weakly on particle Reynolds
number

Po(d) = i po(d)dd (2.44)
where p, = frequency function of the original distribution
* The armor layer particle size frequency is

Pa(d) =kiqpo(d) (2.45)

where g = probability for a particle size d to stay; and k, = constant




* The quantity q varies with particle size d that can be determined by

[m pa(d)dd =1 (2.46)
* The expression for particle size distribution of the armor layer is
gpo (d)dd
P(d) = G, o (2.47)
i apo(d)dd

* The expression for particle size distribution of the moving particles
B (-g)p(d)ad
i (1-a)po(d)dd

* The most detailed experimental observations on the bed shear
stress fluctuation carried out so far are due to Grass (1970)

P(d)

(2.48)

* He pointed out that for any given area of a flat bed there is a
random distribution of bed shear stresses due to stream flow

* There is a second independent random distribution of bed shear
stress for the same area, at which the bed particles move




Dey’s Sediment Threshold Model

Dey (1999) put forward a
sediment threshold model

Vv
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Fig. 2.7 Forces acting on a spherical solitary particle

* Depending on the orientation of the bed particles, the solitary
particle has a tendency either to roll over the valley formed by the two
particles or to roll over the summit of a single particle

* The equation of moment about the point of contact M of the solitary

particle downstream is

(FL —Fg)X +FpZ =0

(2.49)




* The expressions of X and Z (horizontal and vertical lever arms )
given by Dey et al. (1999) [also see Dey (1999)] are

V3 Dd

"4 D+d (2.50)
7= 1 D ap2i6pd_d?)°s (2.51)

2/3 D +d '

* The submerged weight of the solitary particle is

Fo = D’(ps —p)g (2.52)

* The drag force developed due to pressure and viscous skin
frictional forces is

Fp :CDgszurzn (2.53)

where C = drag coefficient; and u,_, = mean flow velocity received by
the frontal area (the projected area of the particle being right angles to
the direction of flow) of the solitary particle




* Empirical equation for drag coefficient C, given by Morsi and
Alexander (1972) is used

Cp = a+bR™'+cR ™2 (2.54)
where R = flow Reynolds number at particle level (= u_D/v); and a, b

and c = coefficients dependent on R

* The lift force, caused by the velocity gradient, in a shear flow is
termed lift due to shear effect (F )

* For a sphere in a viscous flow, Saffman (1968) proposed the
following equation

au 0.5
FLs = CLpDzum(vazj (2.55)

where ou/oz = velocity gradient; u = time-averaged flow velocity at z

* For low particle Reynolds number R,, Eq. (2.55) is applicable

* For large Reynolds number (R. > 3), the solitary particle spins into
the groove, formed by the three closely packed bed particles




* The lift force, caused by the spinning mode of particle, is termed lift
due to Magnus effect (F, )

* Rubinow and Keller (1961) formulated it
Fl=C_pDU,0 (2.56)
where ® = angular velocity of spinning particle

* According to Saffman (1965), the maximum angular velocity
achieved by a solitary particle equals 0.50u/oz

ou

Fm =0.5CLpD Uy (2.57)
* The total lift force F , a combination of F . and F, is expressed as
AL PALE
FL = chDzumﬁéj v+ 0.5f(R) D (azJ (2.58)
Z

where f(R.) = 1 for R, > 3; f(R.) = 0 for R, < 3; and R, is the particle
Reynolds number (= u.d/v). For low values of R, (R. < 3), particles do
not spin




Using Egs. (2.50) - (2.53) and (2.58) into Eq. (2.49), the equation for
the threshold of sediment motion is obtained

2nd
 aCpUA(3+6d —d2)* +6C, duy,(8a/02) 2[(R, /d)aa/ 0210 + £ (R,)}

(2.59)

O

where Uy, = u_/u,; d =d/D; U =ulu,;and 2 =z/D

* The accuracy of the results obtained from the model is highly
dependent on the accurate determination of d

* To avoid this difficulty, d is determined from the information on
angle of repose of bed sediments, using the expression given by
Ippen and Eagleson (1955) for the spherical sediments

2tan@ [6tan @ + (48 tan” ¢+ 27)0‘5]
4 tan” ¢+9

g (2.60)

where ¢ = angle of repose




* The most important event for the threshold of sediment motion is
the sweep event, which has a dominant role in entraining sediment
particles at the bed

* The sweep event applies shear in the direction of the flow and
provides additional forces to the viscous shear stress

* Keshavarzy and Ball (1996) reported that the magnitude of
instantaneous bed shear stress in a sweep event is much larger than
time-averaged bed shear stress. Thus, they proposed the following
equation for rough-turbulent regime

Uy = (1+ pva—1cosy) U, =nUs (2.61)

where u,, = total shear velocity (= u. + u,); u, = instantaneous shear
velocity [= u.p(a -1)°->cosy or (t,/p)°]; 1, = instantaneous bed shear
stress; p = probability of occurring sweep event; o is t,/t, and y is the
sweep angle

* O, calculated from Eq. (2.59) is modified as

®. = 0.(Eq.2.59)? (2.62)




* The particle parameter d is given by (d/v)[gd(p.-p)/p]°* The
following equation is used to compute d

d =R.(d/0,)"° (2.63)

* The virtual bed level is considered to be at a depth of £d below the
top of the bed particles

* The normal distance 6 between the virtual bed level and the bottom
level of the solitary sediment particle given by Dey et al. (1999) is

1 2 2.05 |
o0=——3D“+6Dd-d ——(D+d)+&d 2.04
2«@( ) 2( )+& ( )

* The mean velocity of flow received by the frontal area of the solitary
particle is
D+d

Un :25 u[(z—6)(D+8—z)]0'5dz (2.65)

€
where A = frontal area of the solitary particle exposed to the flow, that
is (nD%/4){1-arccos(1-2h) + 2(1-2 h)[(1- h)]°%}; h=h/D; h=¢-§; and ¢
= coefficient (< 1) and € = normal distance between the bottom level of
the solitary particle or zero-velocity level and the virtual bed level




* The introduction of C is pertinent here because the summits of the
bed particles upstream of the solitary particle obstruct the velocity of
flow to some extent

* The normalized mean velocity U, is obtained

2@1

A ju(z H1+6-2)1"dz (2.66)

Un

where A = A/D2; § =&/D; and & = ¢/D

* The velocity gradient ou/oz can be obtained

ou 1 DProgy Up,s —U

= —dz = & 2.67
6z D+d-¢ Sj oz D+8-¢ (2.67)

* The normalized velocity gradient 0d/02 is
aa _ lj1+8 —Ug
02 1+6-

(2.68)




Case 1 (Rt < 3):

* The flow is hydraulically smooth when R, is less than three because
the bed roughness lies within the viscous sub-layer

* Itis assumed that the velocity distribution of the flow is solely linear
forR, <3

U= ZU. (269)
v

* Mean velocity U,,obtained
ZC R I+5 Q A 0.5

Uy =—= [ [(2-0)(1+0—-2)]"2d2 (2.70)

Ad ;

where ¢ =0if §<0and §=5if § >0

* The velocity gradient determined using Eq. (2.70)

o _ R (2.71)

o2 d




Case 2 (3 < Rt <70):

* The range of particle Reynolds number 3 <R, <70 can be
considered as transitional regime

* The equation of the velocity distribution for transitional regime
proposed by Reichardt (1951)

lj:l ln(l KZR) [1— p(— ZR*A)— ZR*Aexp(— ZRfﬂln(quR*j (2.72)
K d 11.6d/) 11.6d 3d d

where « = von Karman constant (= 0.4); z, = zero-velocity level above
the virtual bed level (= 0.033k,); and k, = equivalent roughness height
of Nikuradse, assumed as d (Wiberg and Smith 1987)

* Mean velocity d,,obtained

0. = K/il?[(z §)(1+8— 2)105{111( KzB*j

€

—[l—exp(— IR, j 2Ry exp( ZRﬁkﬂln(quR*j dz (2.73)
11.6d) 11.6d 3d d

ray A N

where € =Z( if (Zg- 6)=0and € =90 if(Z3-0)<0




* The velocity gradient obtained using Eq. (2.72)

oa 1 k(1+ )R, k&R, 1 L (1+8)R,
= . In| 1+ - —In| 1+ — + X exp| — x
07 k(1+6-8) d d k(146 —8) 11.6d

( j (1+8)R, (1+8)R, (éR* ) ( éR*j‘ (KZOR*j
—exp exp| — — |- = lexp| ——= |¢In| —
11.6d) 11.6d 3d 11.6d 3d /. d

(2.74)
Case 3 (R.>70):
* The velocity distribution in rough regime is
0= lln(zj (2.75)
K L

* Mean velocity d,,obtained

O = ]2{214}8[(2 SHA+6- zn“m(zojd (2.76)

€




* The velocity gradient can be determined

oa_ 1 1+ )77
02 «(l+6-8) | & (2.77)

* Simpson’s rule can be applied to solve Egs. (2.70), (2.73) and
(2.76)

* As the exact expression for the lift coefficient C, as a function of R.
is not available, Eq. (2.62) is required to be calibrated extensively

0 1
* The negative
I I 08 3 values of C, for
200 3 06 — \ low range of R, (R.
o ] / o : \ < 3) were also
300 - 04 - / — | reported by
200 ] / 0y \ Watters and Rao
] 1 \/ (1971) and Davies
500 e 0 —prremt—rrrm—mt—my [ @and Samad
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Fig. 2.8 Dependency of C, on R,
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Fig. 2.9 Dependency of ®_ on particle parameter d for different ¢

Fig. 2.9 enables direct estimation of O




Sediment Threshold on Arbitrary Sloping Beds: Dey’s Approach

\
\ . Vertical

Nommalfo = line Fig. 2.10 Forces acting

SRR fnclined on a particle lying on an
anc . .

2 arbitrary sloping bed

Dey (2003) gave a
sediment threshold model
for arbitrary sloping beds

* When the solitary particle is about to move downstream from its
original position, the equation of force balance

F32 = (Fp cosP + Fg sinO)2 +(FpsinP + Fg sin (1)2 (2.78)

where F = static Coulomb friction force between particle and bed; 6 =
longitudinal bed angle with horizontal; o = transverse bed angle with
horizontal; and 3 = angle of inclination of flow with respect to the
longitudinal axis of the channel (positive downward)




* The submerged weight of the particle
T
Fo = gd3(ps -p)g (2.79)

* The static Coulomb friction force is equated to

F. =(Fg \/cosze—sinza—FL)uC (2.80)
where . = static Coulomb friction factor at threshold condition
Equating Egs. (2.78) and (2.80)

F[% +2Fg (cosPsin6 +sinPsina) + Fé (sin2 0 +sin’ a)

—(Fgeos20—sin? o~ F )2 tan? ¢ = 0 (2.81)




Normalizing the above equation

(1- n2 tan” (p)@%s + Ifz(cos[?)sine +sinPsina+ ntan2 (chos2 0 —sin’ o @CS
D
— Ifl [(cos2 0 —sin? o) tan? Q- sin? 0 —sin? 1=0 (2.82)
D

where n = F /F,; ©_ = Shields parameter on an arbitrarily sloping bed,
that is pu..2/[(ps-p)9d] or t,,/[(ps-p)9d]; u. = critical shear velocity on a
sloping bed, that is (t,/p)°>; 1, = critical bed shear stress on a sloping
bed; and Fp= 6F/(npd2u..2)

* The value of n proposed by Chepil (1958) is as 0.85
* The positive solution of Eq. (2.82)

1
(1-7° tan” 9)Fp

{—(cosPsinO +sinfsina+mn tan” (p\/(:os2 0 —sin’ a)

®cs =

+[(cosPsin® +sinPBsina+n tan” (p\/c:os2 0 —sin? a)2

+(1 —n2 tan? (|))(cos2 0 tan? ¢ — sin? o tan” Q- sin? 0 —sin? a)]o's} (2.83)




* For a horizontal bed, 6 and oo become zero and Eq. (2.83) reduces

O, = e (2.84)
(I1+ntano)Fp

Dividing Eq. (2.83) by Eq. (2.84), yields

~ 1

Ocs =
(I1-mtano)tano

—(cosPBsin0+sinPBsino+ tan? Jcosze—sin2 o
n ¢

+[(cosPsin® +sinPsina+n tan” (p\/cos2 0 —sin? oc)2

2

+(1—- n2 tan” (p)(cos2 0 tan> ¢ —sin atan’ ¢ — sin? 0 —sin? (1)]0'5} (2.85)

where ® oo critical bed shear stress ratio, that is 1,/1,

* The flow through a river or channel is in the longitudinal direction




* The equation of O for this type of flow can be obtained using g =0

~ 1

Ocs =
(1-ntane)tano

{—(sin0+n tan? (p\/cos2 0 —sin? a)

+[(sin0 + ntan2 (p\/cos2 0 —sin? oc)2

+(1- n2 tan > (p)(cos2 0 tan > ¢ — sin? o tan? Q- sin 0 —sin Ot)]o's} (2.86)

* For transverse bed slopes, using6=0andn =0

2

2

~ tan” a

Oy =COsa \/1— (2.87)
tan” @

where 0, = 1, /1, and t,, = bed shear stress on a transversely sloping
bed




For longitudinal bed slopes, using o = 0, Eq. (2.86) becomes

O.g = cosb (1 — tanej (2.88)
tan @

where 0= 1,4/7o; @and t,, = bed shear stress on a longitudinally
sloping bed

* van Rijn (1993) and Dey (2004) proposed that critical bed shear
stress on an arbitrary sloping bed is given by 7y, = 1,®_, 0




Streambed Armoring
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Original streambed Fig. 2.11 Definition
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- Armor-layer

In nonuniform sediments, finer sediment is transported at a faster rate than
the coarser sediment, and the remaining bed sediment becomes coarser.
This coarsening process stops until a layer of coarse sediment completely
develops to cover the streambed protecting the finer sediments beneath it
from being transported. Once this process is completed, the streambed is
armored and the coarse layer is called the armor-layer. Borah (1989) and
Froehlich (1995) reported that the natural armor-layer thickness is one to
three times the armoring particle sizes.
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