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Types of Flow

Fluid Flow

Laminar Flow

Turbulent Flow

Layers of fluid slide smoothly over
each other with different flow
velocities without microscopic

mixing of fluid particles normal to

the direction of flow

Velocity and the pressure at a
fixed point in space do not
remain constant at time but

fluctuate very irregularly with

high frequency




Turbulent Flow:

* Convenient to describe the hydrodynamic quantities by separating
the time-averaged values from their fluctuations

* Decomposition of an instantaneous value of a hydrodynamic
quantity is called the Reynolds decomposition

Instantaneous velocity components
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Fig. 1.1 Time series of u, Pressure intensity
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Time-averaged value of a hydrodynamic quantity, u

1 to+t,
u=— | udt (1.2)
A t

where t, = any arbitrary time; t, = time over which the mean is taken

* t, is taken as sulfficiently long interval of time in order to obtain the
time independent quantities

* Time-averaged values of all the fluctuations are equal to zero

* Time-averaged values of the derivatives of velocity fluctuations also
vanish
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* Quadratic terms resulting from the products of cross-velocity
fluctuations such as u'v’', uv' and ou'v'/ox do not reduce to zero




Velocity fluctuations (u’, v/, w') influence the time-averaged velocity
components (u, v, w), so that the (u, v, w) exhibits an apparent increase
in the resistance to deformation, which is called as turbulent stresses or
Reynolds stresses

Reynolds conditions written with two quantities E and G

E+G=E+G (1.4a)
constant x £ = constant x £ (1.4b)
constant = constant (1.4c)
b _OF (1.4d)
os; 08y

E-G=E-G (1.4e)
E=E (1.41)

E'=0 (1.49)
E-G=E-G (1.4h)
E-G=E-G'=0 (1.41)

where s, = space and time coordinate, that is (x, y, z, t)




Reynolds Equations and Reynolds Stresses

Navier-Stokes equations
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Continuity equation
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where g,, 9,, 9, = components of gravity in (X, y, z); p = mass density of
fluid; and v = kinematic viscosity of fluid




Egs. (1.5a) - (1.5d) can be rewritten as
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Using the Reynolds condition and decomposition into Egs. (1.6a) - (1.6d)
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Subtracting Eq. (1.7d) from Eq. (1.6d), gives the continuity equation
for fluctuating part

ou +8v+8w20 (1.8)
ox 0oy oz

* Lastterms of Egs. (1.7a) - (1.7c) are obtained from three cross
products of velocity fluctuations and provide additional stresses
developed due to turbulence

* They are called as turbulent shear stresses or Reynolds stresses
and can be expressed as a stress tensor called Reynolds stress

tensor
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where ¢, 6,, 6,, = hormal stresses in (X, y, z) directions; and 7,

T T Twy — Shear stresses
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* Reynolds stresses are developed due to turbulent fluctuations and
are given by the time-averaged values of the quadratic terms in the
turbulent fluctuations

* As these terms are added to the ordinary viscous stresses in the
laminar flow and have a similar influence on the flow, it is called often
eddy viscosity

* Reynolds stresses far outweigh the viscous stresses in turbulent
flow




Reynolds Stress Distribution in Open Channel Flow

* For a steady flow having zero-pressure gradient in the x-direction
(streamwise), the basic equations are continuity equation and two
components of Reynolds equation

* z-component of Reynolds equation [Eq. (1.7c)] gives an equation
for the Reynolds stress -pw'w

* x-component of Reynolds equation [Eq. (1.7a)] reduces to
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* oulot=0,w=0, g, =-gsind, dp/ox = 0 and u is a function of z only,
where g = gravitational acceleration. Also, du/ox = 0 for uniform flow

* EqQ. (1.10) becomes

d*u  d(—puw dh
+ =pg— 1.11
i d Cd 111
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where u = dynamic viscosity of fluid, that is pv




Eqg. (1.11) can be written as

i[u%ﬂ—pu'w')}%o (1.12)

dz A

where 1, = bed shear stress, that is pgh(dh/dx)

* Terms inside the parenthesis in LHS of Eq. (1.12) are expressed as

d A
ud—Z+—puw=tv+Il:r (1.13)

where 1, = shear stress due to viscosity, t, = shear stress due to
turbulence or Reynolds stress, and t = total shear stress

* Eq.(1.12) becomes

dt/dz =1y /h (1.14)




Integrating Eq. (1.14) yields

t=[1-(z/h)]ry (1.15)

|

Fig. 1.2 Shear stress components and distribution




Classical Turbulence Theory

* No theory is available to describe the phenomena completely

* Existing theories are based on the semi-empirical hypothesis, which
establish relationship between the Reynolds stresses caused in the
exchange of momentum and the time-averaged velocities

* Basic theories proposed by Prandtl and von Karman




Prandtl’s Mixing-Length Theory

* Prandtl introduced the mixing-length concept in order to calculate
the turbulent shear stress or Reynolds stress

* He simulated momentum exchange on a macro-scale to that of the
molecular motion of a gas to explain the mixing phenomenon induced
by turbulence in fluid flow; and thus established the mixing-length theory
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Fig. 1.3 Mixing-length in turbulent flow

* Horizontal instantaneous velocity fluctuation of the fluid element in
layer 2 is p
u

u'=u2—u1=lz (1.16)

where | = mixing length




* Following the hypothesis of Prandtl that the vertical velocity
fluctuation w’ is of the same order of magnitude as u’

w=—]— (1.17)
Z
* Turbulent shear stress or Reynolds stress t, becomes

= () = pzz(j’;) (1.18)

* Yields the turbulent model of the mixing-length

dul( du
= ol?| | &2 _
=P dz(dzj (1.19)
d
T, =p8m—u (1.20)
dz

where g = kinematic eddy viscosity, that is 12(du/dz)




* Using Eq. (1.20) into Eq. (1.13)

T=(p+p8m)%=p(v+8m)@ (1.21)
A dz

According to Prandtl:
* Mixing-length | is proportional to the distance z from the boundary

* In flows along the smooth boundary, | must vanish, as the
transverse motion is inhibited

| =Kz (1.22)

where k = von Karman constant




Similarity Hypothesis of Turbulent Flow after von Karman

* Exceptin a region near the boundary, turbulence phenomena are
not affected by the viscosity

* Basic pattern of turbulence at different positions are similar, i.e.
they differ only in scales of time and length

du/dz
[=x 5 5
d“u/dz

(1.23)

* Eq. (1.23) indicates that the mixing-length is a local function and
depends only on velocity distribution in the neighborhood of a
particular point




Classification of Flow Layer
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Fig. 1.4 Classification of flow region

* Viscous sub-layer: flow is laminar and turbulence is totally absent
* Transition-layer or buffer-layer: viscous and turbulence effects exist

* Turbulent logarithmic-layer: viscous shear stress is negligible and
the shear stress is due to the turbulence only

* Turbulent outer-layer: velocities are almost constant because of the
presence of large eddies, which produce strong mixing of flow




* Logarithmic velocity profile is applied to both the buffer- and
turbulent outer-layers

* |In the viscous sub-layer, the boundary roughness plays a role on
the velocity distribution, which was first investigated by Nikuradse
(1933)

* Nikuradse introduced the concept of equivalent roughness &,
called Nikuradse’s equivalent roughness




Based on the experimental data, the flow is classified as

* Hydraulically smooth flow (R. < 5): Bed roughness is smaller than the
thickness of viscous sub-layer &, and not affect the velocity distribution

* Hydraulically rough flow (R, > 70): Bed roughness is large that it
produces eddies near the boundary and viscous sub-layer does not exist

* Hydraulically transitional flow (5 < R, < 70): The velocity distribution
is affected by both bed roughness and viscosity

where R, = shear Reynolds number, that is u.e/v; and u, = shear
velocity, that is (t,/p)°-

(a) (b)

ava

]
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Fig. 1.5 (a) Hydraulically smooth flow and (b) hydraulically rough flow




Velocity Distributions

The flow zone over a boundary is characterized by the two-layer:
an inner-layer where the turbulence is directly affected by the bed

roughness and an outer-layer where the bed roughness indirectly
influences the flow

u

J Inner-layer L QOuter-layer |
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Fig. 1.6 Velocity profiles in different layers




Linear-Law in Viscous Sub-Layer

* In case of hydraulically smooth flow, the viscous shear stress is
constant and equal to bed shear stress 1,
T, = V@—T 1.24

v=P dz (1.24)

2

du ="*dz (1.25)
AY%

* Integrating and using no-slip condition at the boundary, thatis «__, =
0, yields

=1 (1.26)
V

where u = u/u,

* Linear velocity distribution in the viscous sub-layer

°* EqQ.(1.206)is valid for the range 0 < u,z/v <5




Logarithmic-Law in Turbulent-Layer

* |n the turbulent-layer, the total shear stress t contains only the
turbulent shear stress

2( du 2
T, =pl (dzj =1 (1.27)
Putting | = xz
du="*dz (1.28)
KZ

Integration of Eq. (1.28) gives the logarithmic velocity distribution

u :llnz+constant (1.29)
K

Using the boundary condition u = 0 and z = z,, that is zero-velocity level

a:lm(zj (1.30)

K ZO




According to Nikuradse’s study on pipe flows

zg=0.11-- for smooth flow R, <5 (1.31a)
Uy
zo =0.033¢ for rough flow R, >70 (1.31b)

zo=0.11--+0.033¢ for transiton 5 <R, <70 (1.31c)
Uy

* American Society of Civil Engineers’ Task Committee (1963)
reported that for open channel roughness similar to that encountered
in pipes, the resistance equations similar to those of pipe flows are
adequate

* For the flow over smooth boundary, such as a plane bed surface
having median particle size less than 0.25 mm, using Eq. (1.31a)
into Eq. (1.30)

ﬁ:lln(’“‘*zj+5.5 (1.32)

K A%




For the flow over a rough boundary, such as gravel-bed, which are often
encountered in hilly rivers, Eq. (1.29) reduces to

i=Llinz+B, (1.33)
K

where z = z/g; B, = constant of integration, that is —(1/x)InZ, ; and Z, = z /¢

z
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Fig. 1.7 Velocity profiles in gravel-beds: (a) wide channel and (b) deep channel




* Nikora and Goring (2000) reported that the value of k goes down
when the bed is mobile

* ltis essential to estimate k from the concept of the mixing-length
using the experimental data

* Raikar (2006) used the measured velocity profiles to determine the
velocity gradients du/dz by smooth curve fitting to the data

* He obtained the Reynolds stresses t directly from the measured
Reynolds stress distributions
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* Inthe inner-layer, all
the experimental data of
the near-threshold
condition collapse
reasonably on a single
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Fig. 1.8 Mixing-length as a function of flow depth (Raikar 2006), where Z; = z/5

* Average value of the von Karman constant k obtained from the slope of the

fitted straight line is 0.35

* Value of x is slightly less than that of von Karman’s 0.41 and greater than
that of Nikora and Goring’s (2000) 0.29 for mobile gravel-beds

Unrest condition of the surface particles at near-threshold is the principal

cause of the reduction of the value of «




* Upper-limit of the inner-layer obtained as 2, = 0.23, in this study, is
slightly higher, since Z,= 0.2 is the traditional upper-limit (Nezu and
Nakagawa 1993)

* Beyond zZ;=0.23, the mean trend of the curve is nonlinear becoming
almost constant at / ~ 0.11 towards the free surface

* Data trend of Nezu and Rodi (1986) and Cardoso et al. (1989)
were similar as well towards the free surface

* In Z;>0.23, the data shows a considerable scatter, which is also
evident in Nezu and Nakagawa (1993), Kironoto and Graf (1994),
and Song et al. (1994)

* Average value of B, (and their standard deviation) obtained by
Raikar (2006) for gravel-bed under near-threshold is 7.8 (+0.37)

* ltis less than those reported in the literature for rough boundary
streams




Law of Wake in Turbulent Outer-Layer (Coles Law)

* In the outer-layer the velocity profile deviates from the logarithmic-
law, as the distance from the boundary increases (u.z/v > 1000)

* Reason for this departure is owing to the assumption of constant
shear stress throughout the fluid and mixing-length approximation

* Coles (1956) suggested the complete description of the velocity
distribution u, including the law of the wake

U= [lln(u*z) + 5.5} + 2—Hsinz(E 21) for smooth flow (1.34a)
K % K 2
g:llngﬂgr +2HSin2(72‘21j for rough flow (1.34b)
K K

where I1 = Coles’ wake parameter; and 2, = z/5

* Last term describes the velocity increase in the turbulent outer-
layer and is called the wake function

* \Wake function is zero near the boundary and increases gradually
towards the free surface and reaches a maximum value of 2I1/k




* Raikar used the experimental velocity distributions to estimate the

wake parameter I1 from Eq. (1.34b) for gravel-bed under near-
threshold

* The average value of IT calculated is 0.11 (+ 0.026)

* Due to the feeble movement of the surface particles at the near-

threshold condition, the value of I1 is slightly greater than those of fixed
rough boundaries

* For smooth boundary streams, the values of IT are relatively high




Turbulence Characteristics in Flow over Loose Beds

* Turbulence fluctuations are presented in the form of root-mean-
square (RMS) termed turbulence intensity
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Fig. 1.9 Turbulence quantities (Grass 1971)




* Turbulence intensity is zero at a boundary and increases rapidly to
reach its peak value within a slight distance from the boundary. Away
from the boundary, in the main flow region, the turbulence intensity is
less and essentially constant

* |n the main flow region, the vertical fluctuations approach shear
velocity, w*/u, ~ 1. The streamwise fluctuations are greater than the
shear velocity

* Type of boundary has no effect on the intensity of the fluctuations in
the main flow region




* Nezu (1977) suggested the exponential-law for the nondimensional
streamwise and vertical turbulence intensities

" =B, exp(—C,%) (1.35a)
W' =B, exp(-C,,%) (1.35b)

where #" = u*/u,; w5 = wHw,; w* = (Ww )5 and B, B,,C,and C =
constants

Source B, Cu BW CW Boundary condition
Nezu (1977) 2.3 1 1.27 1 Smooth and rough
Nezu and Rodi 2.26 0.88 1.23 0.67 Smooth and rough
(1986)
Cardoso et al. (1989) 2.28 1.08 - - Smooth
Kironoto and Graf 2.04 0.97 1.14 0.76 Rough
(1994)

Raikar (2006) 207 | 095 | 117 | 0.69 Rough
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Nikora and Goring (1998)
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Experimental Determination of Bed Shear Stress

* The shear velocity u. [= (t,/p)°°] and hence bed shear stress t, can
be determined from the well-known Clauser method, applying the least
square fitting of Eq. (1.32) or Eq. (1.33) to the experimental data in the
inner-layer ( z < 0.2)

* The bed shear stress 1, can be obtained from the Reynolds stress
profiles extending them on the boundary, that is 7, = T’z—z
<0

* The bed shear stress 1, can be calculated from the bed-slope S, as
T, = pghS




Bed Shear in a Rectangular Channel with Rough Bed and
Smooth Walls

The equation of bed shear stress t as a function of dynamic pressure
T, =];bp Ui (1.37)
where f = friction factor

The Colebrook-White equation, used to evaluate f,

1 SPb 2.51

——=-0.861 1.38
NI n[14.8Ab T RNT,,J (1.38)

where A = flow area; P = wetted perimeter; and R = Reynolds number
of flow

* In a rectangular channel or an experimental flume, the bed is rough
consisting of sediment particles and the sidewalls are smooth

* f, is considerably different from f,, t,, is significantly different from <,

* Vanoni’s (1975) method of side-wall correction is applied




Using the continuity equation
QZAUIAWUW+AbUb (139)

The equation of force along streamwise direction

—AZp:ngzP pJ;WUzP +p@U§Pb (1.40)
X

where dp/dx = streamwise pressure gradient
UsingU=U_,=U, into Eq. (1.40)
Pf =P, f,,+ 5 fp (1.41)

Hydraulic grade line is same for smooth wall and the rough bed regions

Pf:oww :beb

4 A 4, (1.42)
Reynolds numbers of flow for different regions
4UA 4UA 4UA
R="2, R, ,=—W R =——b (1.43)
v P v P, v b,




Using Eq. (1.43) into Eq. (1.42)

E = R_W = & (1 _44)

A fw fb

As the wall is smooth, the Blasius equation can be used to evaluate f,
0.316

Jw="023 (1.45)
R,

Using Egs. (1.39) - (1.45), the following equation is obtained

y (1.46)

w

—-1.25
1= 0.316Rb£4UA —Rbpbj

w

Using Eq. (1.43) in Eq. (1.38), Colebrook-White equation becomes

1:—0,86111( U, 21 j (1.47)

V5 3.7va+Rbm

e can be assumed as d.,, as was done by Dey (2003). Unknowns R,
and f, can be determined numerically solving Egs. (1.46) and (1.47).
Eq. (1.37) is used to estimate the bed shear stress 1,




Stresses in Nonuniform Unsteady Flow: Dey and Lambert’s
Approach

* Dey and Lambert (2005) developed theory for stresses in nonuniform
unsteady flow

The Reynolds equation for two-dimensional non-uniform unsteady
flow in open channels

1
0, +Wii, +ii, = (- p,+1,) (1.48)

where u and w = time-averaged point velocities in streamwise x and
normal z directions, respectively; x and z = distances in streamwise
and normal directions, respectively; t = time; and t = Reynolds stress
at any depth z, that is -p u'w/

Time-averaged point velocity components and the Reynolds stress

i =Uy(n,1) (1.49a)

w =Up(n,1) (1.49b)

T=—pu'w :r\zzai(n,t) (1.50)




where U = depth-averaged velocity; T‘z:a = bed shear stress; a =
zero-velocity level, that is z\ﬁzo, being equal to 0.033¢; € = equivalent
roughness assumed as d (Dey 2003); n = z/h; and h = flow depth

Prandtl-von Karman universal (logarithmic) velocity distribution law

7=t T‘Z—zaln(ij (1.51)

K p a
where k = von Karman constant being 0.4

The depth-averaged velocity U can be given

h T
Lt B [Tema (1.52)
h—a, K\ p

U =

where B = —[IneV(-®) + 1]; and e = a/h

Differentiating Egs. (1.49a) and (1.50)

_ U
y =yU, _;n\Vnhx (1.53)




U

I/_lZ :Z\Vn (1 54)
Uy
T, = z=ag (1.55)
h
U

Differentiating Eq. (1.49b)

U
w, :Z(Pn (157)

Using continuity equation of time-averaged point velocity
components, thatis u#, + w, =0, and Eq. (1.53)

h
(Pn :anhx _U\VU)C (158)




Integrating Eq. (1.58)

n h n 1 n
¢=hnyydn—-—U,[ydn=ynh, ——(hU, +Uh,)]ydn (1.59)
e U e U e

The continuity equation for depth-averaged non-uniform unsteady
flow in open channels

hU, +Uh, +h, =0 (1.60)

Using Eq. (1.60) into Eq. (1.59), the expression of ¢ becomes

|
¢ =ynh+—h[ydn (1.61)
U .

Inserting Eq. (1.61) in Eq. (1.49b)

l
w=unh, +h, [ydn (1.62)
e




Substituting Egs. (1.49a), (1.49b), (1.53) - (1.56) and (1.62) in Eq. (1.48)

) Ul 1 T,
Dy Uy +yU; —— n-Jydn \Vnht_i'U\Vt:B —Pxt &n (1.63)
e

The piezometric pressure gradient is given by
Px=—pg(S—hy) (1.64)

The Saint Venant equation of motion for non-uniform unsteady flow in
open channels

U T _ 1
—U,+h,—S+ +—U, =0 (1.65)
g pgh g

* For simplicity, the momentum correction factor is assumed to be

unity in Eq. (1.65), as it varies from 1.01 to 1.1 in straight open
channels

Rearranging Eq. (1.65)
phU

U, ——Psh (hx—S+1Utj—1:—x—1 (1.66)
g

T‘ZZCI ) T‘ZZCZ

where A = streamwise pressure gradient parameter




)= Pgh (h —S+1Uj (1.67)
g

=

* In Eq. (1.67), for steady flow U, = 0; and for uniform flow h, = 0. In
accelerating and decelerating flows A <-1 and A > -1

Using Egs. (1.66) and (1.67) into Eq. (1.63) yields

h N U h
—(7»+1)\|!2+(\|!—1)pUz—[n—f\vdnj DSyl + P Uy =My
T’z:a € ’Z a T‘Z:a
(1.68)
Dividing Eq. (1.51) by Eq. (1.52) and equating to Eq. (1.49a)
u 1. (n
AR Y B I 1.69
=)= (1.69)

* Eq. (1.69) represents the velocity profile characteristics that
remain independent of time (y, = 0)




Substituting Eq. (1.69) into Eq. (1.68) and making vy, =0

o Loy (L) _ | ph 1] T () e .|l PU
gn_x (X+I)len (ej{ﬁln(e) ILZ_aUt B{l B{ln(ejﬂ] l}hz_aht

(1.70)
At the bed (n = e)
h 1 pU
&n‘nq_;“ T‘P Ur—2 pht (1.71)
Integrating Eq. (1.71) and using the boundary condition &]nzg =
§:1+x(n—e)—(x+1)g{nlnz(”)—z[nln(”)—me}
B e e
MM (13 ey [Py S e ([, 2
J{Bln(ej (1+Bj(n e):|TzaUt+B|: 5 ln(ej ( Bj(n e)} ‘Z:a

(1.72)




Substituting A from Eq. (1.67) and U, from Eq. (1.60) into Eq. (1.72),
the equation of non-dimensional Reynolds stress for non-uniform
unsteady flow in open channels

E=1+(n—¢e) b/ (hx—S)—l{nlnz(nj—Z{nln(nj—n+e}} U (Uh, +hy)
T‘z:a Bz € € T‘ZZCI
h
+é{nln(2)—n+e} 2o +é{”geln(2j—[l+§]m—e>} T"U b (1.73)

The bed shear stress r\ __ can be obtained from Eq. (1.73) using the
boundary condition 1 _, =0

1__ =—(1-e)pgh(h, - S) +Bi2[1n2 e+2(Ine+1—e)pU(Uh, +h) +%(lne+ 1—e)phU,

I1|1+e

+B{ﬁlne+(l+ﬁj(l e)}pUh (1.74)




Using Egs. (1.73) and (1.74), the equation of Reynolds stress r\Z:Z
can be obtained

1. =—(1-n)pgh(h, —S) - Blz{n 1n2(”j —n%e- 2[11 1n("j +lne+1- n}}pU(Uhx +1h)
e

e

R 1{11111(”) et —n}phUt + 1H<n +e) ln(”j +(l+e) lne} + (1 + 2)(1 —n)}pUht
B BB e B

e

(1.75)
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Turbulent Burst

A flow structure dominated by viscosity consists of large 3D high- and
low-speed velocity steaks

The near-bed region of flow has an extremely complex structure and
most of the turbulence is produced there

Turbulent bursts is formed by the emission of fluid from the low-speed
streaks

The sequence is described by ejection and sweep which have an
important role on entrainment of bed sediments. During the ejection,
the upward flow expands the shear layer and the associated small-
scale flow structures to a broad region. It occurs as a low-speed fluid
streak that oscillates in three dimensions lifts up from the bed and
then collapse to entrain into the main body of flow. The ejected fluid
which remains as a result of retardation is brushed away by high-
speed fluid that approaches the bed in a process called the sweep.
During sweep, the downward flow generates a narrow, highly
turbulent shear layer containing multiple small-scale vortices.




Quadrant Analysis

Outward

Ejection . :
Interaction

Inward

_ ) Sweep
Interaction

The hyperbolic shaded zone bounded by the curve | u’v'| = constant is
called a hole. Introducing a parameter H called hole-size that represents

threshold level




The conditional stochastic analysis can be performed introducing a
detection function ; () defined as

’ > H(W)OS (W)O.S

1, if (u',v")isin quadrant i and if |u'v

}Li,H(yat) :{

0, otherwise

At any point, contributions to the total Reynolds shear stress from
the quadrant i outside the hyperbolic hole region of size H is given

by

('), =tim - [ WOV (O, (i)

T—0 T
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