Menu:

 

 

Volume 23, Issue 1 - June 2023

 

Download (1220KB, PDF)

 

 

  • Abstract / Resumo
  • References / Bibliografia
  • Citations / Citações

Revista de Gestão Costeira Integrada
Volume 23, Issue 1, June 2023, Pages 41-51

DOI: 10.5894/rgci-n501
*Submission: 1 FEB 2022; Peer review: 10 FEB 2022; Revised: 7 SEP 2023; Accepted: 7 SEP 2023; Available on-line: 7 FEB 2024

Sediment plume simulation from bottom-trawled fishery and deposition effects on rhodoliths and deep-water corals from Campos basin, Brazil.

Pedro Mello Paiva@ 1, Jader Lugon Junior2, Luciano Gomes Fischer3, Maria Manuela Fraga Juliano4, Emiliano Nicolas Calderon5, Mauricio Mussi Molisani6


@ Corresponding author: [email protected]

1 Federal University of Rio de Janeiro (PPGCiAC)

2 Fluminense Federal Institute (AMBHIDRO). Email: [email protected]

3 Federal University of Rio de Janeiro (PPGCiAC). Email: [email protected]

4 University of the Azores (Marine Sciences). Email: [email protected]

5 Federal University of Rio de Janeiro (PPGCiAC). Email: [email protected]

6 Federal University of Rio de Janeiro (PPGCiAC). Email: [email protected]


ABSTRACT
Extensive rhodoliths and deep-water coral has been described along the continental shelf and slope of the Campos Basin, but such environments can be highly vulnerable to the bottom trawling fishing. This study applied the MOHID software to simulate the sediment resuspension during the bottom trawling operation and to evaluate possible impacts of sediment deposition onto rhodoliths and deep-water coral. The sediment transport model was validated by field measurements of a bottom trawling operation and presented good accuracy. The results indicated that sediment resuspension by a double-rig trawling induced a 0.13 mm sediment layer deposition onto the rhodoliths from the continental shelf which has potential deleterious effects considered that such thickness is higher than the threshold proposed by the literature. On the contrary, a sediment resuspension/deposition by a single-rig trawling has no impact in the deep-water corals from the continental slope based on the thin layer deposition that was lower than the proposed tolerance limits.

Keywords: Computational modeling, Sediment transport, MOHID, Continental shelf, slope

RESUMO
O leito marinho da Bacia de Campos é caracterizado pela presença extensiva de rodolitos e corais de águas profundas ao longo da plataforma e talude continental, podendo ser esses ambientes sensíveis a pesca de arrasto. Este estudo utilizou o software MOHID para simular a sedimentação do material ressuspendido durante uma operação de pesca de arrasto na Bacia de Campos, avaliando possíveis impactos da disposição de sedimentos no rodolitos e corais de águas profundas. O modelo de transporte de sedimentos foi validado por medições de campo de uma operação de pesca de arrasto, apresentando boa acurácia. Os resultados indicaram que a ressuspensão de sedimentos pela pesca de arrasto de porta dupla tem um potencial de causar impactos a rodolitos, devido a deposição de uma camada de sedimentos de espessura superior a 0,13 mm, sendo esses valores acima dos valores de tolerância estabelecidos pela literatura. Por outro lado, não houve indicação de impactos aos corais de águas profundas do talude pela deposição de sedimentos ocasionada pela pesca de arrasto de porta simples.

Palavras-chave: Modelagem computacional, Transporte de sedimentos, MOHID, Plataforma continental, Talude

 

Amado-Filho, G. M., Moura, R. L., Bastos, A. C., Salgado, L. T., Sumida, P. Y., Guth, A. Z., Francini-Filho, R. B., Pereira-Filho, G. H., Abrantes, D. P., Brasileiro, P. S., Bahia, R. G., Leal, R. N., Kaufman, L., Kleypas, J. A., Farina, M., & Thompson, F. L. (2012). Rhodolith Beds Are Major CaCO3 Bio-Factories in the Tropical South West Atlantic. PLoS ONE, 7(4), e35171. https://doi.org/10.1371/journal.pone.0035171

Angeletti, S., Pierini, J. O., & Cervellini, P. M. (2019). Suspended sediment contribution resulting from bioturbation in intertidal sites of a SW Atlantic mesotidal estuary: Data analysis and numerical modelling. Scientia Marina, 82(4), 245. https://doi.org/10.3989/scimar.04799.07A

Arana, P. M., Pezzuto, P. R., Avila-da-Silva, A. O., Queirolo, D., Perez, J. A. A., & Arfelli, C. A. (2016). Pathways for sustainable industrial fisheries in southeastern and southern Brazil. Latin American Journal of Aquatic Research, 44(5), 875–882. https://doi.org/10.3856/vol44-issue5-fulltext-1

Baussant, T., Nilsen, M., Ravagnan, E., Westerlund, S., & Ramanand, S. (2018). Effects of suspended drill cuttings on the coral Lophelia pertusa using pulsed and continuous exposure scenarios. Journal of Toxicology and Environmental Health, Part A, 81(10), 361–382. https://doi.org/10.1080/15287394.2018.1444375

Benn, A. R., Weaver, P. P., Billet, D. S. M., Hove, S. van den, Murdock, A. P., Doneghan, G. B., & Bas, T. L. (2010). Human Activities on the Deep Seafloor in the North East Atlantic: An Assessment of Spatial Extent. PLoS ONE, 5(9). https://doi.org/10.1371/journal.pone.0012730

Brooke, S., Holmes, M., & Young, C. (2009). Sediment tolerance of two different morphotypes of the deep-sea coral Lophelia pertusa from the Gulf of Mexico. Marine Ecology Progress Series, 390, 137–144. https://doi.org/10.3354/meps08191

Cancino, L., & Neves, R. (1994). Numerical Modelling of Three-Dimensional Cohesive Sediment Transport in an Estuarine Environment. Sediment Transport Mechanisms in Coastal Environments and Rivers, 107–121. https://doi.org/10.1142/2442

Castro, R. D., & Picolini, J. P. (2015). Principais Aspectos da Geologia Regional da Bacia de Campos. In Geologia e Geomorfologia (pp. 1–12). Elsevier. https://doi.org/10.1016/B978-85-352-6937-6.50008-2

Cavalcanti, G. H., Arantes, R. C. M., Falcão, A. P. C., Curbelo-Fernandez, M. P., Silveira, M. A. S., Politano, A. T., Viana, A. R., Hercos, C. M., & Brasil, A. C. S. (2017). Ecossistemas de corais de águas profundas da Bacia de Campos. In Comunidades Demersais e Bioconstrutores: Caracterização ambiental regional da Bacia de Campos, Atlântico Sudoeste (Vol. 4, pp. 43–85). Elsevier. https://doi.org/10.1016/B978-85-352-7295-6.50003-8

Cho, K.-H., Choi, J.-Y., Jeong, S.-H., Choi, J.-W., Kwon, J.-I., & Park, K.-S. (2013). Development of a skill assessment tool for the Korea operational oceanographic system. Acta Oceanologica Sinica, 32(9), 74–81. https://doi.org/10.1007/s13131-013-0354-9

Clark, M. R., Althaus, F., Schlacher, T. A., Williams, A., Bowden, D. A., & Rowden, A. A. (2016). The impacts of deep-sea fisheries on benthic communities: A review. ICES Journal of Marine Science, 73(suppl_1), i51–i69. https://doi.org/10.1093/icesjms/fsv123

Coelho, H. S., Neves, R. J. J., White, M., Leitão, P. C., & Santos, A. J. (2002). A model for ocean circulation on the Iberian coast. Journal of Marine Systems, 32(1–3), 153–179. https://doi.org/10.1016/S0924-7963(02)00032-5

Costa, S., Picado, A., Vaz, N., Coelho, C., Portela, L., & Dias, J. M. (2018). Climate Change Effects on Suspended Sediment Dynamics in a Coastal Lagoon: Ria de Aveiro (Portugal). Journal of Coastal Research, 85, 521–525. https://doi.org/10.2112/SI85-105.1

Curbelo-Fernandez, M. P., Della Giustina, I. D., Loiola, L. de L., Arantes, R. C. M., de Moura, R. B., Barboza, C. A. de M., Nunes, F. S., Tâmega, F. T. de S., Henriques, M. C. M. de O., Figueiredo, M. A. de O., Falcão, A. P. da C., & Rosso, S. (2017). Biota de fundos carbonáticos da plataforma continental da Bacia de Campos: Algas calcárias e fauna associada. In Comunidades Demersais e Bioconstrutores (Vol. 4, pp. 15–42). Elsevier. DOI: 10.1016/B978-85-352-7295-6.50002-6. https://doi.org/10.1016/B978-85-352-7295-6.50002-6

Diesing, M., Stephens, D., & Aldridge, J. (2013). A proposed method for assessing the extent of the seabed significantly affected by demersal fishing in the Greater North Sea. ICES Journal of Marine Science, 70(6), 1085–1096. https://doi.org/10.1093/icesjms/fst066

Durrieu de Madron, X., Ferré, B., Le Corre, G., Grenz, C., Conan, P., Pujo-Pay, M., Buscail, R., & Bodiot, O. (2005). Trawling-induced resuspension and dispersal of muddy sediments and dissolved elements in the Gulf of Lion (NW Mediterranean). Continental Shelf Research, 25(19–20), 2387–2409. https://doi.org/10.1016/j.csr.2005.08.002

Figueiredo, M. A. O., Eide, I., Reynier, M., Villas-Bôas, B., Tâmega, F. T. S., Ferreira, C. G., Nilssen, I., Coutinho, R., & Johnsen, S. (2015). The effect of sediment mimicking drill cuttings on deep water rhodoliths in a flow-through system: Experimental work and modeling. Marine Pollution Bulletin, 95(1), 81–88. https://doi.org/10.1016/j.marpolbul.2015.04.040

Franz, G., Delpey, M. T., Brito, D., Pinto, L., Leitão, P., & Neves, R. (2017). Modelling of sediment transport and morphological evolution under the combined action of waves and currents. Ocean Science, 13(5), 673–690. https://doi.org/10.5194/os-13-673-2017

Franz, G., Leitão, P., Pinto, L., Jauch, E., Fernandes, L., & Neves, R. (2017). Development and validation of a morphological model for multiple sediment classes. International Journal of Sediment Research, 32(4), 585–596. https://doi.org/10.1016/j.ijsrc.2017.05.002

Franz, G., Leitão, P., Santos, A. dos, Juliano, M., & Neves, R. (2016). From regional to local scale modelling on the south-eastern Brazilian shelf: Case study of Paranaguá estuarine system. Brazilian Journal of Oceanography, 64(3), 277–294. https://doi.org/10.1590/S1679-875920161195806403

Franz, G., Pinto, L., Ascione, I., Mateus, M., Fernandes, R., Leitão, P., & Neves, R. (2014). Modelling of cohesive sediment dynamics in tidal estuarine systems: Case study of Tagus estuary, Portugal. Estuarine, Coastal and Shelf Science, 151, 34–44. https://doi.org/10.1016/j.ecss.2014.09.017

Harrington, L., Fabricius, K., Eaglesham, G., & Negri, A. (2005). Synergistic effects of diuron and sedimentation on photosynthesis and survival of crustose coralline algae. Marine Pollution Bulletin, 51(1–4), 415–427. https://doi.org/10.1016/j.marpolbul.2004.10.042

Henriques, M. C., Riosmena-Rodríguez, R., Coutinho, L. M., & Figueiredo, M. A. O. (2014). Lithophylloideae and Mastophoroideae (Corallinales, Rhodophyta) from the Brazilian continental shelf. Phytotaxa, 190(1), 112. https://doi.org/10.11646/phytotaxa.190.1.9

Järnegren, J., Brooke, S., & Jensen, H. (2017). Effects of drill cuttings on larvae of the cold-water coral Lophelia pertusa. Deep Sea Research Part II: Topical Studies in Oceanography, 137, 454–462. https://doi.org/10.1016/j.dsr2.2016.06.014

Juliano, M. M. F., Neves, R., Rodrigues, P. P. G. W., Lugon Junior, J., & Fernandes, R. (2012). Use of the MOHID Platform for computational simulation of oil ocean drift in the Campos basin—RJ. Boletim do Observatório Ambiental Alberto Ribeiro Lamego, 6(1), 161–172. https://doi.org/10.5935/2177-4560.20120010

Larsson, A. I., & Purser, A. (2011). Sedimentation on the cold-water coral Lophelia pertusa: Cleaning efficiency from natural sediments and drill cuttings. Marine Pollution Bulletin, 62(6), 1159–1168. https://doi.org/10.1016/j.marpolbul.2011.03.041

Larsson, A. I., van Oevelen, D., Purser, A., & Thomsen, L. (2013). Tolerance to long-term exposure of suspended benthic sediments and drill cuttings in the cold-water coral Lophelia pertusa. Marine Pollution Bulletin, 70(1–2), 176–188. https://doi.org/10.1016/j.marpolbul.2013.02.033

Lazure, P., & Dumas, F. (2008). An external–internal mode coupling for a 3D hydrodynamical model for applications at regional scale (MARS). Advances in Water Resources, 31(2), 233–250. https://doi.org/10.1016/j.advwatres.2007.06.010

Leitão, P., Mateus, M., Braunschweig, F., Fernandes, L., & Neves, R. (2008). Modelling coastal systems: The MOHID water numerical lab. In Perspectives on integrated coastal zone management in South America (pp. 77–88). IST Press. DOI: 10.13140/2.1.1482.4008.

Lepland, A., Sæther, O., & Thorsnes, T. (2000). Accumulation of barium in recent Skagerrak sediments: Sources and distribution controls. Marine Geology, 163(1–4), 13–26. https://doi.org/10.1016/S0025-3227(99)00104-8

Linders, T., Nilsson, P., Wikström, A., & Sköld, M. (2018). Distribution and fate of trawling-induced suspension of sediments in a marine protected area. ICES Journal of Marine Science, 75(2), 785–795. https://doi.org/10.1093/icesjms/fsx196

Littler, M. M., Littler, D. S., Blair, S. M., & Norris, J. N. (1985). Deepest Known Plant Life Discovered on an Uncharted Seamount. Science, New Series, 227(4682), 57–59. https://doi.org/10.1126/science.227.4682.57

Littler, M. M., Littler, D. S., & Dennis Hanisak, M. (1991). Deep-water rhodolith distribution, productivity, and growth history at sites of formation and subsequent degradation. Journal of Experimental Marine Biology and Ecology, 150(2), 163–182. https://doi.org/10.1016/0022-0981(91)90066-6

Magris, R. A., Costa, M. D. P., Ferreira, C. E. L., Vilar, C. C., Joyeux, J.-C., Creed, J. C., Copertino, M. S., Horta, P. A., Sumida, P. Y. G., Francini-Filho, R. B., & Floeter, S. R. (2021). A blueprint for securing Brazil’s marine biodiversity and supporting the achievement of global conservation goals. Diversity and Distributions, 27(2), 198–215. https://doi.org/10.1111/ddi.13183

Marín, V. H., Tironi, A., Paredes, M. A., & Contreras, M. (2013). Modeling suspended solids in a Northern Chilean Patagonia glacier-fed fjord: GLOF scenarios under climate change conditions. Ecological Modelling, 264, 7–16. https://doi.org/10.1016/j.ecolmodel.2012.06.017

Mengual, B., Cayocca, F., Le Hir, P., Draye, R., Laffargue, P., Vincent, B., & Garlan, T. (2016). Influence of bottom trawling on sediment resuspension in the ‘Grande-Vasière’ area (Bay of Biscay, France). Ocean Dynamics, 66(9), 1181–1207. https://doi.org/10.1007/s10236-016-0974-7

Olsson, O., Sorokin, A., & Ikramova, M. (2011). Modelling scenarios to identify a combined sediment-water management strategy for the large reservoirs of the Tuyamuyun hydro-complex. Irrigation and Drainage Systems, 25(1), 1–18. https://doi.org/10.1007/s10795-011-9107-0

O’Neill, F. G., & Summerbell, K. (2011). The mobilisation of sediment by demersal otter trawls. Marine Pollution Bulletin, 62(5), 1088–1097. https://doi.org/10.1016/j.marpolbul.2011.01.038

Paiva, P. M., Junior, J. L., Calderon, E. N., Juliano, M. M. F., & Molisani, M. M. (2020). Decommissioning of subsea oil and gas production pipelines: Hydrodynamic modeling for preliminary assessment of sediment resuspension and burial onto benthic organisms. Journal of Integrated Coastal Zone Management / Revista de Gestão Costeira Integrada, 20(3), 8. https://doi.org/10.5894/rgci-n286

Paiva, P. M., Lugon Junior, J., Barreto, A. N., Silva, J. A. F., & Silva Neto, A. J. (2017). Comparing 3d and 2d computational modeling of an oil well blowout using MOHID platform—A case study in the Campos Basin. Science of The Total Environment, 595, 633–641. https://doi.org/10.1016/j.scitotenv.2017.04.007

Park, K.-S., Heo, K.-Y., Jun, K., Kwon, J.-I., Kim, J., Choi, J.-Y., Cho, K.-H., Choi, B.-J., Seo, S.-N., Kim, Y. H., Kim, S.-D., Yang, C.-S., Lee, J.-C., Kim, S.-I., Kim, S., Choi, J.-W., & Jeong, S.-H. (2015). Development of the Operational Oceanographic System of Korea. Ocean Science Journal, 50(2), 353–369. https://doi.org/10.1007/s12601-015-0033-1

Payo-Payo, M., Jacinto, R. S., Lastras, G., Rabineau, M., Puig, P., Martín, J., Canals, M., & Sultan, N. (2017). Numerical modeling of bottom trawling-induced sediment transport and accumulation in La Fonera submarine canyon, northwestern Mediterranean Sea. Marine Geology, 386, 107–125. https://doi.org/10.1016/j.margeo.2017.02.015

Perez, J. A. A., Wahrlich, R., & Pezzuto, P. R. (2009). Chartered trawling on the Brazilian slope. Marine Fisheries Review, 71(2), 24-37. https://spo.nmfs.noaa.gov/sites/default/files/pdf-content/MFR/mfr712/mfr7123.pdf.

PETROBRAS. (2014). Projeto de Caracterização Regional da Bacia de Campos (PCR-BC/Habitats) [Relatório Final e Dados Georreferenciados]. Petrobras. http://licenciamento.ibama.gov.br/Petroleo/Temas%20Especiais/PCR-BC/

Port, D., Perez, J. A. A., & Menezes, J. T. de. (2016). The evolution of the industrial trawl fishery footprint off southeastern and southern Brazil. Latin American Journal of Aquatic Research, 44(5), 908–926. https://doi.org/10.3856/vol44-issue5-fulltext-4

Puig, P., Canals, M., Company, J. B., Martín, J., Amblas, D., Lastras, G., Palanques, A., & Calafat, A. M. (2012). Ploughing the deep sea floor. Nature, 489(7415), 286–289. https://doi.org/10.1038/nature11410

Ramirez-Llodra, E., Tyler, P. A., Baker, M. C., Bergstad, O. A., Clark, M. R., Escobar, E., Levin, L. A., Menot, L., Rowden, A. A., Smith, C. R., & Van Dover, C. L. (2011). Man and the Last Great Wilderness: Human Impact on the Deep Sea. PLoS ONE, 6(8), e22588. https://doi.org/10.1371/journal.pone.0022588

Restrepo, J. C., Escobar, J., Otero, L., Franco, D., Pierini, J., & Correa, I. (2017). Factors Influencing the Distribution and Characteristics of Surface Sediment in the Bay of Cartagena, Colombia. Journal of Coastal Research, 331, 135–148. https://doi.org/10.2112/JCOASTRES-D-15-00185.1

Reynier, M. V., Tâmega, F. T. S., Daflon, S. D. A., Santos, M. A. B., Coutinho, R., & Figueiredo, M. A. O. (2015). Long- and short-term effects of smothering and burial by drill cuttings on calcareous algae in a static-renewal test: Effects of drill cuttings on calcareous algae. Environmental Toxicology and Chemistry, 34(7), 1572–1577. https://doi.org/10.1002/etc.2938

Rezende, C. E., Almeida, M. G., Araújo, B. F., Gobo, A. A. R., Maciel, C. P., Gobo, R. R., de Sá Azevedo, W. C., de Oliveira Godoy, J. M., & de Almeida, A. C. (2017). A composição física e elementar dos sedimentos marinhos entre a região costeira e o oceano profundo na Bacia de Campos. In Quimica Ambiental (pp. 229–276). Elsevier. DOI: 10.1016/b978-85-352-7563-6.50016-8.

Riul, P., Targino, C. H., Farias, J. D. N., Visscher, P. T., & Horta, P. A. (2008). Decrease in Lithothamnion sp. (Rhodophyta) primary production due to the deposition of a thin sediment layer. Journal of the Marine Biological Association of the United Kingdom, 88(1), 17–19. https://doi.org/10.1017/S0025315408000258

Rogers, C. (1990). Responses of coral reefs and reef organisms to sedimentation. Marine Ecology Progress Series, 62, 185–202. https://doi.org/10.3354/meps062185

Sant Ana, R., & Perez, J. A. A. (2016). Surveying while fishing in the slope areas off Brazil: Direct assessment of fish stock abundance from data recorded during commercial trawl fishing operations. Latin American Journal of Aquatic Research, 44(5), 1039–1055. https://doi.org/10.3856/vol44-issue5-fulltext-15

Santos, A., Martins, H., Coelho, H., Leitão, P., & Neves, R. (2002). A circulation model for the European ocean margin. Applied Mathematical Modelling, 26(5), 563–582. https://doi.org/10.1016/S0307-904X(01)00069-5

Silva, P. L., Martins, F., Boski, T., & Sampath, R. (2012). Modeling Basin Infilling Processes in Estuaries using two different approaches: An Aggregate Diffusive Type Model and a Processed Based Model. Revista da Gestão Costeira Integrada, 12(2), 117–129. https://doi.org/10.5894/rgci272

Smit, M. G. D., Holthaus, K. I. E., Trannum, H. C., Neff, J. M., Kjeilen-Eilertsen, G., Jak, R. G., Singsaas, I., Huijbregts, M. A. J., & Hendriks, A. J. (2008). SPECIES SENSITIVITY DISTRIBUTIONS FOR SUSPENDED CLAYS, SEDIMENT BURIAL, AND GRAIN SIZE CHANGE IN THE MARINE ENVIRONMENT. Environmental Toxicology and Chemistry, 27(4), 1006. https://doi.org/10.1897/07-339.1

Tagliolatto, A. B., Giffoni, B., Guimarães, S., Godfrey, M. H., & Monteiro-Neto, C. (2020). Incidental capture and mortality of sea turtles in the industrial double-rig-bottom trawl fishery in south-eastern Brazil. Aquatic Conservation: Marine and Freshwater Ecosystems, 30(2), 351–363. https://doi.org/10.1002/aqc.3252

Tosic, M., Martins, F., Lonin, S., Izquierdo, A., & Restrepo, J. D. (2019). A practical method for setting coastal water quality targets: Harmonization of land-based discharge limits with marine ecosystem thresholds. Marine Policy, 108, 103641. https://doi.org/10.1016/j.marpol.2019.103641

Vaz, N., Vaz, L., Serôdio, J., & Dias, J. M. (2019). A modeling study of light extinction due to cohesive sediments in a shallow coastal lagoon under well mixed conditions. Science of The Total Environment, 694, 133707. https://doi.org/10.1016/j.scitotenv.2019.133707

Villas-Bôas, A. B., Tâmega, F. T. D. S., Andrade, M., Coutinho, R., & Figueiredo, M. A. D. O. (2014). Experimental Effects of Sediment Burial and Light Attenuation on Two Coralline Algae of a Deep Water Rhodolith Bed in Rio de Janeiro, Brazil. Cryptogamie, Algologie, 35(1), 67–76. https://doi.org/10.7872/crya.v35.iss1.2014.67

Wilson, S., Blake, C., Berges, J. A., & Maggs, C. A. (2004). Environmental tolerances of free-living coralline algae (maerl): Implications for European marine conservation. Biological Conservation, 120(2), 279–289. https://doi.org/10.1016/j.biocon.2004.03.001

 

em constru��o