Menu:

 

 

Volume 22, Issue 2 - June 2022

 

Download (784KB, PDF)

 

 

  • Abstract / Resumo
  • References / Bibliografia
  • Citations / Cita��es

Revista de Gestão Costeira Integrada
Volume 22, Issue 2, September 2022, Pages 127-143

DOI: 10.5894/rgci-n496
* Submission: 25 FEB 2022; Peer review: 26 FEB 2022; Revised: 2 SEP 2022; Accepted: 2 SEP 2022; Available on-line: 12 OCT 2022

Environmental impacts on marine energy: collision risks for marine animals and priority species for monitoring in Brazil

Catarina Luiza Damasceno Lima da Silva@ 1, Pedro Henrique Castello Branco Dágola1, Marcos Antônio Cruz Moreira1, Luís Felipe Umbelino dos Santos1


Corresponding author: [email protected].
1 Fluminense Federal Institute of Education, Science and Technology. Rio de Janeiro, Brazil.


ABSTRACT
Brazil has great potential for the development of technologies for the conversion of marine energy from waves and tides, which raises the discussion about the possible environmental impacts of these projects. This article seeks to synthesize knowledge about the risks of collision of marine animals, such as mammals, fish and birds, with marine renewable energy (MRE) devices, as well as to identify priority species for environmental monitoring along the Brazilian coast. The risk of marine mammals colliding with MRE devices is influenced by regional and behavioral factors. The risk of collision in a fish community is influenced by the avoidance behavior, the distribution of fish in the MRE sites and the stages of the enterprise (installation, operation and maintenance). Seabird collision risk is influenced by species behavior (geographical distribution, seasonal habitat use, diving time and depth) and the location of MRE structures (surface and/or water column). The survey of priority species for monitoring the risk of collision with MRE devices in Brazil consisted of 5 species of marine mammals, 13 taxa of seabirds, 5 species of endangered sea turtles and 18 species or groups of species of fish of economic importance to the country. The research review did not record the occurrence of collisions with marine animals. However, this does not mean that they did not occur, but that they may not have been observed due to monitoring challenges. The study concluded that research on the interaction of marine animals with MRE devices should be encouraged, even in prototypes and non-commercial projects, in order to reduce knowledge gaps and support the development of MRE in an environmentally sound manner.

Keywords: Marine renewable energy, Collision risk, Species, Marine animals.

RESUMO
O Brasil possui grande potencial para o desenvolvimento de tecnologias de conversão de energia marinha das ondas e marés, o que aflora a discussão sobre os possíveis impactos ambientais desses empreendimentos. Este artigo busca sintetizar os conhecimentos sobre os riscos de colisão de animais marinhos, como mamíferos, peixes e pássaros, com dispositivos de energia marinha renovável (EMR), bem como identificar as espécies prioritárias para o monitoramento ambiental ao longo da costa brasileira. O risco de colisão de mamíferos marinhos com dispositivos de EMR é influenciado por fatores regionais e comportamentais. O risco de colisão em comunidade de peixes é influenciado pelo comportamento de evasão, a distribuição dos peixes nos locais de EMR e as etapas do empreendimento (instalação, operação e manutenção). O risco de colisão de aves marinhas é influenciado pelo comportamento das espécies (distribuição geográfica, uso sazonal do habitat, tempo e profundidade de mergulho) e pela localização das estruturas de EMR (superfície e/ou coluna de água). O levantamento de espécies prioritárias para o monitoramento do risco de colisão com dispositivos de EMR no Brasil foi constituído por 5 espécies de mamíferos marinhos, 13 táxons de aves marinhas, 5 espécies de tartarugas marinhas ameaçados de extinção e por 18 espécies ou grupos de espécies de peixes de importância econômica para o país. A revisão das pesquisas não registrou ocorrência de colisões com animais marinhos. No entanto, não significa que não ocorreram, mas que podem não ter sido observadas devido aos desafios do monitoramento. O estudo concluiu que as pesquisas de interação de animais marinhos com dispositivos de EMR devem ser fomentadas, mesmo que em protótipos e projetos não comerciais, a fim de reduzir as lacunas do conhecimento e auxiliar o desenvolvimento da EMR de forma ambientalmente adequada.

Palavras-chave: Energia renovável marinha, Risco de colisão, Espécies, Animais marinhos.

 

Ahmadian, R.; Falconer, R.; Bockelmann-Evans, B. (2012) - Far-field modelling of the hydro-environmental impact of tidal stream turbines. Renewable Energy, 38 (1): 107-116. DOI: 10.1016/j.renene.2011.07.005.

Band, B. (2014) - Detailed Collision Risk Assessment: Marine Mammals, Basking Shark, and Diving Birds (Report No. REP 443-04-01 20141120). 233p. European Marine Energy Centre, Annex 3, Stromness, Orkney. https://tethys.pnnl.gov/publications/emec-fall-warness-test-site-environmental-appraisal.

Barros, S. R.; Wasserman, J. C.; Lima, G. B. (2010) - Risco Ambiental na zona costeira: uma proposta interdisciplinar de gestão participativa para os Planos de Controle a Emergências dos portos brasileiros. Revista de Gestão Costeira Integrada-Journal of Integrated Coastal Zone Management, 10 (2): 217-227. DOI: 10.5894 / rgci173.

Bevelhimer, M.; Scherelis, C.; Colby, J.; Adonizio, M. A. (2017) - Hydroacoustic Assessment of Behavioral Responses by Fish Passing Near an Operating Tidal Turbine in the East River, New York. Transactions of the American Fisheries Society, 146 (5): 1028-1042. DOI: 10.1080/00028487.2017.1339637.

Benjamins, S.; van Geel, N.; Hastie, G.; Elliott, J.; Wilson, B. (2017) - Harbour porpoise distribution can vary at small spatiotemporal scales in energetic habitats. Deep Sea Research Part II: Topical Studies in Oceanography, 141: 191-202. DOI: 10.1016/j.dsr2.2016.07.002.

Bjorndal, K. A. (1997) - Foraging ecology and nutrition of sea turtles. In: Lutz, P. L.; Musick, J. A. (eds.), The biology of sea turtles, pp.199-231, CRC Press, Boca Raton, FL, EUA. ISBN: 0849384222. Disponível on-line em: http://www.seaturtle.org/library/BjorndalKA_1997_InThebiologyofseaturtles_p199-231.pdf.

Boehlert, G.; Gill, A. (2010) - Environmental and ecological effects of ocean renewable energy development: A current synthesis. Oceanography 23 (2): 68–81. DOI: 10.5670/oceanog.2010.46.

Branco, J. O. (2004) - Aves marinhas das Ilhas de Santa Catarina. In: Branco, J. O. (org.), Aves marinhas e insulares brasileiras: bioecologia e conservação, pp.15-36, UNIVALI, Itajaí, SC, Brasil. ISBN: 8586447919. Disponível on-line em: http://www.avesmarinhas.com.br/Cap%C3%ADtulo%201.pdf.

Ceará (2021) – Complexo do Pecém e Eco Wave Power assinam Memorando de Entendimento para implantação de Usina de Ondas. Governo do Estado do Ceará, Brasil. Disponível online em: https://www.ceara.gov.br/2021/06/01/complexo-do-pecem-e-eco-wave-power-assinam-memorando-de-entendimento-para-implantacao-de-usina-de-ondas/. Acesso em: 10 set. 2021.

Cooper, E.; Brocklehurst, J.; Smith, K. (2020) – ENFAIT - Enabling Future Arrays in Tidal Year 3 Environmental Monitoring Report. 23p., Nova Innovation Ltd., Edinburgh, Scotland. https://www.enfait.eu/wp-content/uploads/2020/10/EnFAIT-EU-0057-Y3-Environmental-Monitoring-Report-v1.0.pdf.

Copping, A. E., Battey, H.; Brown-Saracino, J.; Massaua, M.; Smith, C. (2014) - An international assessment of the environmental effects of marine energy development. Ocean and coastal management, 99: 3-13. DOI: 10.1016/j.ocecoaman.2014.04.002.

Copping, A. E.; Grear, M. E. (2018) - Applying a simple model for estimating the likelihood of collision of marine mammals with tidal turbines. International Marine Energy Journal, 1 (1): 27-33. DOI: 10.36688/imej.1.27-33.

Copping, A. E.; Hemery, L.G. (2020) - OES-Environmental 2020 State of the Science Report: Environmental Effects of Marine Renewable Energy Development Around the World. Ocean Energy Systems (OES), Richland, WA, U.S. https://doi.org/10.2172/1632878.

Dias-Neto, J.; Dias, J. de F. O. (2015) - O uso da biodiversidade aquática no Brasil: uma avaliação com foco na pesca, 288p., Ibama, Brasília, DF, Brasil.

EPE - Empresa de Pesquisa Energética (s/d) (2020a) - Anuário Estatístico de Energia Elétrica 2020. 256p., Empresa de Pesquisa Energética, Rio de Janeiro, RJ, Brasil. https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/anuario-estatistico-de-energia-eletrica.

EPE - Empresa de Pesquisa Energética (s/d) (2020b) - Balanço Energético Nacional 2020: Ano base 2019. 292p., Empresa de Pesquisa Energética, Rio de Janeiro, RJ, Brasil. https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-479/topico-528/BEN2020_sp.pdf.

EPE - Empresa de Pesquisa Energética (s/d) (2021) - Relatório Síntese do Balanço Energético Nacional 2021- Ano base 2020. 73p., Empresa de Pesquisa Energética, Rio de Janeiro, RJ, Brasil. https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/balanco-energetico-nacional-2021.

Fairley, I.; Karunarathna, H.; Chatzirodou, A. (2017) - Modelling the Effects of Marine Energy Extraction on Non-Cohesive Sediment Transport and Morphological Change in the Pentland Firth and Orkney Waters. Report by Swansea University for Marine Scotland Science, Swansea, UK. https://data.marine.gov.scot/sites/default/files/SMFS%200807.pdf.

Ferreira, R. M.; Estefen, S. F. (2009) - Alternative concept for tidal power plant with reservoir restrictions, Renewable Energy, 34: 1151-1157. DOI: 10.1016/j.renene.2008.08.014.

Florêncio, M.; Trigoso, F. B. M. (2020) - Pesquisas e projetos desenvolvidos no Brasil para o aproveitamento do potencial de geração de energia elétrica com ondas e marés. VIII Congresso Brasileiro de Energia Solar – Anais CBENS 2020 (ISBN: 978-65-993338-0-4), Fortaleza, CE, Brasil. https://anaiscbens.emnuvens.com.br/cbens/article/view/972.

Fraser, S.; Williamson, B. J.; Nikora, V.; Scott, B. E. (2018) - Fish distributions in a tidal channel indicate the behavioural impact of a marine renewable energy installation. Energy Reports, 4: 65-69. DOI:10.1016/j.egyr.2018.01 .008.

Froese, R.; D. Pauly. (Eds) (2021) – FishBase (06/2021) [banco de dados]. Disponível em: www.fishbase.org.

Furness, R. W.; Wade, H. M.; Robbins, A. M. C.; Masden, E. A. (2012) - Assessing the sensitivity of seabird populations to adverse effects from tidal stream turbines and wave energy devices. ICES Journal of Marine Science, 69 (8): 1466-1479. DOI: 10.1093/icesjms/fss131.

Grippo, M.; Shen, H.; Zydlewski, G.; Rao, S.; Goodwin, A. (2017) - Behavioral Responses of Fish to a Current-Based Hydrokinetic Turbine Under Multiple Operational Conditions: Final Report (ANL/EVS-17/6). 42p., Report by Argonne National Laboratory for U.S. Department of Energy, Illinois, U.S. In: https://publications.anl.gov/anlpubs/2017/02/129701.pdf.

Halvorsen, M. B.; Casper, B. M.; Woodley, C. M.; Carlson, T. J.; Popper, A. N. (2012) - Threshold for onset of injury in Chinook salmon from exposure to impulsive pile driving sounds. Plos One, 7 (6): e38968. DOI: 10.1371/journal.pone.0038968.

Hastie, G. D.; Russell, D. J. F.; Benjamins, S.; Moss, S.; Wilson, B.; Thompson, D. (2016) - Dynamic habitat corridors for marine predators; intensive use of a coastal channel by harbour seals is modulated by tidal currents. Behavioral Ecology and Sociobiology, 70 (12): 2161-2174. DOI:10.1007/s00265-016-2219-7.

Holdman, A. K.; Haxel, J. H.; Klinck, H.; Torres, L. G. (2019) - Acoustic monitoring reveals the times and tides of harbor porpoise (Phocoena phocoena) distribution off central Oregon, U.S.A. Marine Mammal Science, 35 (1): 164-186. DOI:10.1111/mms.12537.

ICMBio - Instituto Chico Mendes de Conservação da Biodiversidade (2018) - Livro Vermelho da Fauna Brasileira Ameaçada de Extinção. 4162p., Ministério do Meio Ambiente, Instituto Chico Mendes de Conservação da Biodiversidade, Brasília, DF, Brasil.

IEA- International Energy Agency (s/d) (2020) - Mix de geração de eletricidade global, 2010-2020. International Energy Agency, Paris, France. In: https://www.iea.org/data-and-statistics/charts/global-electricity-generation-mix-2010-2020.

IPCC - Intergovernmental Panel on Climate Change (2021) - Summary for Policymakers. In: Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S. L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M. I.; Huang, M.; Leitzell, K.; Lonnoy, E.; Matthews, J. B. R.; Maycock, T. K.; Waterfield, T.; Yelekçi, O.; Yu, R. and Zhou, B. (eds.) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, pp. 3−32. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. DOI:10.1017/9781009157896.001.

IRENA - International Renewable Energy Agency (s/d) (2020) - Innovation outlook: Ocean energy technologies. 112p., International Renewable Energy Agency, Abu Dhabi, United Arab Emirates. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Dec/IRENA_Innovation_Outlook_Ocean_Energy_2020.pdf.

IRENA - International Renewable Energy Agency (s/d) (2021) - World Energy Transitions Outlook: 1.5°C Pathway. 312p., International Renewable Energy Agency, Abu Dhabi, United Arab Emirates. https://www.irena.org/publications/2021/Jun/World-Energy-Transitions-Outlook.

IUCN - International Union for Conservation of Nature (2001). Red List Categories and Criteria: Version 3.1. 30p., IUCN Species Survival Commission, Gland, Switzerland and Cambridge, UK. https://portals.iucn.org/library/sites/library/files/documents/RL-2001-001.pdf.

Jackson, A. C. (2014) - Riding the waves: use of the Pelamis device by seabirds. Proceedings of the 2nd International Conference on Environmental Interactions of Marine Renewable Energy Technologies (EIMR) 2014, Stornoway, Isle of Lewis, Outer Hebrides, Scotland. Disponível on-line em https://tethys.pnnl.gov/sites/default/files/publications/jacksonetal2014.pdf.

Jones, C.; Magalen, J.; Roberts, J. (2014) - Wave Energy Converter (WEC) Array Effects on Wave, Current, and Sediment Circulation: Monterey Bay, CA (Report No. SAND2014-17401). 39p., Report by Sandia National Laboratories for U.S. Department of Energy, Califórnia, U.S. https://tethys.pnnl.gov/sites/default/files/publications/Jones-et-al-2014.pdf.

Khaled, F.; Guillou, S.; Hadri, F.; Méar, Y. (2019) - Numerical modelling of the effect of the hydro-kinetic turbines on the transport of sediments - Application to the Rhone site. MATEC Web Conference, 261: 05003. DOI: 10.1051/matecconf /201926105003.

Keenan, G.; Sparling, C.; Williams, H.; Fortune, F. (2011) - Sea Gen Environmental Monitoring Programme Final Report. 81p., Report by Royal Haskoning for Marine Current Turbines (MCT), Edinburgh, U.K. https://tethys.pnnl.gov/sites/default/files/publications/Final_EMP_report_SeaGen.pdf.

Kennedy M.; Spencer H. G. (2014) - Classification of the cormorants of the world. Molecular Phylogenetics and Evolution, 79: 249-257. DOI: 10.1016/j.ympev.2014.06.020.

Langton, R.; Davies, I. M.; Scott, B. E. (2011) - Seabird conservation and tidal stream and wave power generation: Information needs for predicting and managing potential impacts. Marine Policy, 35 (5): 623-630. DOI: 10.1016/j.marpol.2011.02.002.

Lieber, L.; Nimmo-Smith, W. A. M.; Waggitt, J. J.; Kregting, L. (2018) - Fine-scale hydrodynamic metrics underlying predator occupancy patterns in tidal stream environments. Ecological Indicators, 94: 397- 408. DOI: 10.1016/j.ecolind.2018.06.071.

Lieber, L.; Nimmo-Smith, W. A. M.; Waggitt, J. J.; Kregting, L. (2019) - Localised anthropogenic wake generates a predictable foraging hotspot for top predators. Communications Biology, 2 (1): 123. DOI: 10.1038/s42003 -019-0364-z.

Macaulay, J.; Malinka, C.; Coram, A.; Gordon, J.; Northridge, S. (2015) - The density and behaviour of marine mammals in tidal rapids (Report No. MR 7.1.2). 53p., Sea Mammal Research Unit, University of St. Andrews, St. Andrews, Scotland. https://tethys.pnnl.gov/sites/default/files/publications/MR7-1-2_porpoise_in_tidal_rapids_VF1.pdf.

Macaulay, J.; Gordon, J.; Gillespie, D.; Malinka, C.; Northridge, S. (2017) - Passive acoustic methods for fine-scale tracking of harbour porpoises in tidal rapids. The Journal of the Acoustical Society of America, 141 (2): 1120-1132. DOI: 10.1121/1.4976077.

Matzner, S.; Trostle, C.; Staines, G.; Hull, R.; Avila, A.; Harker-Klimes, G. (2017) - Triton: Igiugig Fish Video Analysis (PNNL-26576). 60p., Pacific Northwest National Laboratory, Richland, WA, U.S. https://tethys.pnnl.gov/sites/default/files/publications/Triton-Igiugig-Report.pdf.

Mascarenhas, R.; Batista, C. P.; Moura, I. F.; Caldas, A. R.; da Costa Neto, J. M.; Vasconcelos, M. Q.; Rosa, S. S. et al. (2008) - Lixo marinho em área de reprodução de tartarugas marinhas no Estado da Paraíba (Nordeste do Brasil). Revista de Gestão Costeira Integrada-Journal of Integrated Coastal Zone Management, 8 (2): 221-231. DOI: 10.5894/rgci138.

MMA- Ministério do Meio Ambiente (2008) - Macrodiagnóstico da Zona Costeira e Marinha do Brasil. 242p., Ministério do Meio Ambiente, Brasília, DF, Brasil.

Monteiro-Filho, E. L. A.; Oliveira, L. V.; Monteiro, K. D. K. A.; Filla, G. F.; Quito, L.; Godoy, D. F. (2013) - Guia Ilustrado de Mamíferos Marinhos do Brasil. 106p., Instituto de Pesquisa Cananéia (IPeC), São Paulo, Brasil.

Nedwell, J.; Brooker, A. (2008) - Measurement and Assessment of Background Underwater Noise and its Comparison with Noise from Pin Pile Drilling Operations During Installation of the SeaGen Tidal Turbine Device, Strangford Lough (Report No. 724R0120). 37p., Subacoustech Ltd., County of Down, Northern Ireland. https://tethys.pnnl.gov/sites/default/files/publications/Nedwell-Brooker-2008.pdf.

Piacentini, Patricia. (2016) - Faltam estratégias no Brasil para gerar energia das marés. Ciência e Cultura, 68 (3): 11-13. DOI: 10.21800/2317-66602016000300005.

Piacentini, V. D. Q.; Aleixo, A.; Agne, C. E.; Maurício, G. N.; Pacheco, J. F.; Bravo, G. A.; Cesari, E. (2015) - Lista comentada das aves do Brasil pelo Comitê Brasileiro de Registros Ornitológicos. Revista Brasileira de Ornitologia (ISSN 2178-7875), 23 (2): 91-298. Disponível on-line em http://www.revbrasilornitol.com.br/BJO/article/view/1263/pdf_905.

Salvarani, P. I.; de Menezes Fernandes, A. C.; Morgado, F. M. R. (2013) - Percepção ambiental de estudantes na conservação das tartarugas marinhas em Aveiro, Portugal. Revista de Gestão Costeira Integrada-Journal of Integrated Coastal Zone Management, 13 (2): 137-144. DOI: 10.5894/rgci334.

Santos, M. C. O. (2021a) - Mamíferos marinhos. In: Harari, J. (org.), Noções de Oceanografia, pp.627-646. Instituto Oceanográfico, São Paulo, Brasil. https://www.inserver.com.br/usp/livros/nocoes-oceanografia.pdf.

Santos, M. C. O. (2021b) - Tartarugas marinhas. In: Harari, J. (org.), Noções de Oceanografia, pp.573-597. Instituto Oceanográfico, São Paulo, Brasil. https://www.inserver.com.br/usp/livros/nocoes-oceanografia.pdf.

Sforza, R.; Marcondes, A. C. J.; Pizetta, G. T. (2017) - Guia de Licenciamento Tartarugas Marinhas-Diretrizes para avaliação e mitigação de impactos de empreendimentos costeiros e marinhos. Instituto Chico Mendes de Conservação da Biodiversidade, Brasília, DF, Brasil. https://www.icmbio.gov.br/portal/images/stories/comunicacao/publicacoes/publicacoes-diversas/guia_licenciamento_tartarugas_marinhas_v8.pdf.

Scottish Natural Heritage (s/d) (2016) - Assessing collision risk between underwater turbines and marine wildlife. 92p., Scottish Natural Heritage, Inverness, Scotland. In: https://tethys.pnnl.gov/sites/default/files/publications/scottish-natural-heritage-report.pdf.

Shen, H.; Zydlewski, G. B.; Viehman, H. A.; Staines, G. (2016) - Estimating the probability of fish encountering a marine hydrokinetic device. Renewable Energy, 97: 746-756. DOI: 10.1016/j.renene.2016.06.026.

Silveira, F. F. (2020) - Fauna digital do Rio Grande do Sul [banco de dados]. Disponível em http://ufrgs.br/faunadigitalrs /lamna-nasus-tubarao-sardo/.

Sparling, C.E.; Seitz, A.C.; Masden, E.; Smith, K. (2020) - Collision Risk for Animals around Turbines. In A.E. Copping; L.G. Hemery (Eds.), OES-Environmental 2020 State of the Science Report: Environmental Effects of Marine Renewable Energy Development Around the World, pp.28-65, Ocean Energy Systems (OES), Richland, WA, U.S. https://doi.org/10.2172/1632881.

Spellman, F. R. (2014) - Environmental impacts of renewable energy. 470p., CRC press, Boca Raton, U.S. https://doi.org/10.1201/b17744

Staines, G.; Zydlewski, G.; Viehman, H. (2019) - Changes in Relative Fish Density Around a Deployed Tidal Turbine during on-Water Activities. Sustainability, 11 (22): 6262. DOI: 10.3390/su11226262.

Tolmasquim, M. T. (2016) - Energia Renovável: Hidráulica, Biomassa, Eólica, Solar, Oceânica. 452p., Empresa de Pesquisa Energética, Rio de Janeiro, Brasil. ISBN 978-85-60025-06-0.

UNCLOS - United Nations Convention of the Law of the Sea (s/d) (2012) - UNCLOS at 30. 15p., United Nations, New York, USA. In: www.un.org/depts/los/convention_agreements/pamphlet_unclos_at_30.pdf.

Viehman, H. A.; Zydlewski, G. B. (2017) - Multi-scale temporal patterns in fish presence in a high-velocity tidal channel. PLOS ONE, 12 (5): e0176405. DOI: 10.1371/journal.pone.0176405.

Viehman, H.; Boucher, T.; Redden, A. (2018) - Winter and summer differences in probability of fish encounter (spatial overlap) with MHK devices. International Marine Energy Journal, 1(1): 9-18. DOI: 10.36688/imej.1.9-18 .

Waggitt, J. J.; Cazenave, P. W.; Torres, R.; Williamson, B. J.; Scott, B. E. (2016) - Quantifying pursuit-diving seabirds’ associations with fine-scale physical features in tidal stream environments. Journal of Applied Ecology, 53 (6): 1653-1666. DOI: 10.1111/1365-2664.12646 Williamson, B.; Fraser, S.; Williamson, L.; Nikora, V.; Scott, B. (2019) - Predictable changes in fish school characteristics due to a tidal turbine support structure. Renewable Energy, 141: 1092-1102. DOI: 10.1016 /j.renene.2019.04.065.

Wilson, B.; Batty, R.; Daunt, F.; Carter, C. (2007) - Collision Risks Between Marine Renewable Energy Devices and Mammals, Fish and Diving Birds. 110p., Scottish Association for Marine Science, Oban, Scotland. https://tethys.pnnl.gov/sites/default/files/publications/Wilson-et-al-2007.pdf.

Whitton, T. A.; Jackson, S. E.; Hiddink, J. G.; Scoulding, B.; Bowers, D.; Powell, B.; D’Urban Jackson, T.; Gimenez, L.; Davies, A. G. (2020) - Vertical migrations of fish schools determine overlap with a mobile tidal stream marine renewable energy device. Journal of Applied Ecology, 57 (4): 729-741. DOI: 10.1111/1365-2664.13582.

Xodus Group (s/d) (2016) - Brims Tidal Array Collision Risk Modelling - Atlantic Salmon (Report No. A-100242-S02-TECH-001). 11p., Xodus Group, London, UK. In: https://tethys.pnnl.gov/sites/default/files/publications/Brims-Tidal-Array-Collision-Modeling-2016.pdf.

Yoshida, T.; Zhou, J.; Park, S.; Muto, H.; Kitazawa, D. (2020) - Use of a model turbine to investigate the high striking risk of fish with tidal and oceanic current turbine blades under slow rotational speed. Sustainable Energy Technologies and Assessments, 37: 100634. DOI: 10.1016/j.seta.2020.100634.

Zhang, J.; Kitazawa, D.; Taya, S.; Mizukami, Y. (2017) - Impact assessment of marine current turbines on fish behavior using an experimental approach based on the similarity law. Journal of Marine Science and Technology, 22 (2): 219-230. DOI: 10.1007/s00773-016-0405-y.

 

em constru��o