Volume 12, Issue 2 - June 2012


Download (8.736KB, PDF)



  • Abstract / Resumo
  • References / Bibliografia
  • Citations / Citações

Revista de Gestão Costeira Integrada
Volume 12, Número 2, Junho 2012, Páginas 117-129

DOI: 10.5894/rgci272
Submission: March 11, 2011; Evaluation: May 24, 2011; Reception of revised manuscript: August 12, 2011; Accepted: September 16, 2011; Available on-line: 15 Dezembro 2011

Modeling Basin Infilling Processes in Estuaries using two different approaches: An Aggregate Diffusive Type Model and a Processed Based Model

Modelação do Preenchimento Sedimentar em Estuários. Comparação de duas abordagens: Modelo Difusivo de Parâmetros Agregados e Modelo de Processos Físicos

P. Laginha Silva@, 1, F. Martins1, T. Boski1, R. Sampath1

@ - Corresponding author: [email protected]
1 - Universidade do Algarve – CIMA, Campus da Penha 8005-139 Faro, Portugal.
E-mails: [email protected], [email protected], [email protected], [email protected]

Long term basin infilling simulations are traditionally carried out using synthetic models. The usual reasons for the preference of these types of models over the more elaborated process based models are the heavy computational needs and the poor knowledge of the processes in presence.
The main objective of this article is to show that computational power and numerical methods are now reaching a state that these long term simulations can be affordably obtained using state-of-the-art process-based models. To accomplish this, the morphodynamic model, that solves explicitly the mass conservation equation for the bathymetry evolution and then actualizes the bathymetry, are used to perform long term simulations for the estuarine bathymetry evolution.
The results are compared with a traditional synthetic aggregate parameters basin infilling model of the diffusive type. It is shown that the process based models, while conceptually different, produce physically meaningful and comparable results with the diffusive type models. Moreover, they enable the simulation of conditions not allowed by the formulation of diffusive type models with acceptable computational times, as for example the addition of tide and river input.

Keywords: Morphodynamic modeling, Basin infilling, sediment dynamics, aggregate diffusive type model, Process Based Model.

As simulações de preenchimento sedimentar de longo termo são tradicionalmente realizadas através de modelos de parâmetros agregados. A justificação invocada para a utilização desses modelos em vez dos modelos baseados em processos físicos, mais elaborados, relaciona-se com as maiores necessidades computacionais destes últimos e com fraco conhecimento dos processos presentes.
O principal objectivo deste artigo é mostrar que actualmente o poder computacional e os métodos numéricos possibilitam que essas simulações de longo-termo possam ser resolvidas utilizando modelos de processos físicos. O modelo Mohid para além de ser morfodinâmico resolve ainda a equação de conservação de massa para a evolução da batimetria que depois actualiza a batimetria.
Os resultados são comparados com os obtidos por um modelo difusivo de preenchimento sedimentar tradicional. Embora conceptualmente diferentes, os modelos baseados em processos produzem resultados fisicamente significativos e comparáveis com os modelos do tipo difusivo. Os modelos baseados em processos permitem a simulação de condições impossíveis de formular com os modelos do tipo difusivos em escalas temporais computacionalmente aceitáveis.

Palavras-chave:Modelação Morfodinâmica, Preenchimento Sedimentar, Dinâmica Sedimentar, Modelo Difusivo de Parâmetros Agregados e Modelo de Processos Físicos


Ackers, P.; White, W.R. (1973) – Sediment Transport: New Approach and Analysis. Journal of the Hydraulics Division (ISSN: 0044-796X), 99(11):2041-2060. ASCE - (American Society of Civil Engineers), Reston, Virginia, U.S.A.

Allen, P.A.; Allen, J.R. (1990) – Basin Analysis: Principles and Applications. 445p., Blackwell Scientific Publications, Oxford, U.K. ISBN: 0632024232

Arakawa, A.; Lamb, V.R. (1977) – Computational design of the basic dynamical processes of the UCLA general circulation model. In: J. Chang (ed.), Methods in Computational Physics, 17: 173-265, Academic Press, New York, NY, U.S.A. ISBN: 0124608175.

Bernardes, M.E.C.; Davidson, M.A.; Dyer, K.R.; George, K.J. (2006) – Towards medium term (order of months) morphodynamic modelling of the Teign estuary, UK. Ocean Dynamics, 56(3-4):186-197. DOI: 10.1007/s10236-005-0039-9.

Briggs, L.I.; Pollack, H.N. (1967) – Digital model of evaporate sedimentation. Science, 155(3761):453-456. DOI: 10.1126/science.155.3761.453.

Cao, Z.; Carling, P.A. (2002) - Mathematical modeling of alluvial rivers: reality and myth. Part 2: Special issues. Proceedings of the Institution of Civil Engineers Water & Maritime Engineering, 154(4):297-307. DOI: 10.1680/wame.2002.154.4.297.

Carter, T.R.; la Rovere, E.L. (2001) - Developing and Applying Scenarios. In: McCarthy, J.J.; Canziani, O. F.; Leary, N.A.; Dokken, D.J.; White, K.S. (eds.), Climate change 2001: impacts, adaptation and vulnerability, pp.145-190, Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Contribution of Working Group II, Cambridge University Press, Cambridge, U.K. ISBN: 0521807689. Available:

Coelho, H.; Neves, R.; White, M.; Leitão P.; Santos, A. (2002) - A Model for Ocean Circulation on the Iberian Coast. Journal of Marine Systems, 32(1-3):153-179. DOI: 10.1016/S0924-7963(02)00032-5.

Flemmings, P.B.; Jordan, T.E. (1989) – A synthetic stratigraphic model of foreland basin development. Journal of Geophysical Research (ISSN 0148–0227), 94(B4):3851-3866, AGU - American Geophysical Union,. New York, NY, U.S.A..

Gabriel, S.; Martins, F. (2008). – First Results of a Long Term Morphodynamic Process Based Model. Journal of Coastal Research (ISSN: 0749-0258), SI56(2):952-955. Available:

Goldenfeld, N.; Kadanoff, L.P. (1999) – Simple lessons from complexity. Science, 284(5411):87-89. DOI: 10.1126/science.284.5411.87.

Hibma, A.; Schuttelaars, H.M.; Wang, Z.B. (2003) – Comparison of longitudinal equilibrium profiles of estuaries in idealized and process-based models. Ocean Dynamics, 53(3):252-269. DOI: 10-1007/s10236-003-0046-7.

Lyn, D.A. (2007) – Turbulence Models for Sediment Transport Engineering. In: Garcia, M. H. (ed.), Sedimentation Engineering: Processes, Management, Modeling and Practice, pp.763-826, American Society of Civil Engineers, Reston, VA, U.S.A. ISBN: 9780784408148.

Martins, F.; Neves, R.; Leitão, P. (1998) – A three-dimensional hydrodynamic model with generic vertical coordinate. In: V. Babovic & L. C. Larsen (eds.), Hydroinformatics ‘98: proceedings of the third International Conference on Hydroinformatics, Vol. 2, pp. 1403-1410, Leiden, The Netherlands. ISBN: 9789054109853. Available:

Martins, F.; Neves, R.; Leitão, P.; Silva, A. (2001) - 3D modeling in the Sado estuary using a new generic coordinate approach. Oceanologica Acta, 24(Supplement 1):51-62. DOI: 10.1016/S0399-1784(01)00092-5.

Miranda, R.; Braunschweig, F. ; Leitão, P. ; Neves, R. ; Martins, F. ; Santos A. (2000) – MOHID 2000 - A coastal integrated object oriented model. In: W.R. Blain & C.A. Brebbia (eds.), Ecology and the Environment (Hydraulic Engineering Software VIII), 40:393-401.
DOI: 10.2495/HY000371.

Paola, C. (2000) – Quantitative models of sedimentary basin filing. Sedimentology, 47(Supplement):121-178. DOI: 10.1046/j.1365-3091.2000.00006.x

Paola, C.; Heller, P.L.; Angevine, C.L. (1992) – The large-scale dynamics of grain-size variation in alluvial basins, 1: Theory. Basin Research, 4(2):73-90, Laramie, Wy, U.S.A. DOI: 10.1111/j.1365-2117.1992.tb00145.x

Schuttelaars, H.M.; de Swart, H.E. (2000) – Multiple morphodynamic equilibria in tidal embayments. Journal of Geophysical Research, 105(C10):24105-24118. DOI: 10.1029/2000JC900110.

Schwarzacher, W. (1966) – Sedimentation in a subsiding basin. Nature, 210(5043):1349-1350. DOI: 10.1038/2101349a0.

Tipper, J.C. (1992) – Landforms developing and basing filing: Three-dimensional simulation of erosion, sediment transport, and deposition. In: R. Pflug & J.W. Harbaugh (eds.), Computer Graphics in Geology. Lectures Notes in Earth Sciences, Vol. 41, pp.155-170. Springer-Verlag, Berlin, Germany. DOI: 10.1007/BFb0117794.

Wentworth, C.K. (1922) – A scale of grade and class terms for clastic sediments. The Journal of Geology, 30(5):377-392. Available

Werner, B.T. (1999) – Complexity in natural landform patterns. Science, Vol. 284, 284(5411):102-104. DOI: 10.1126/science.284.5411.102.

em construção