Volume 14, Issue 3 - September 2014
Download (1.100KB, PDF) |
- Abstract / Resumo
- References / Bibliografia
- Citations / Citações
Revista de Gestão Costeira Integrada
Volume 14, Número 3, Setembro 2014, Páginas 365-383
DOI: 10.5894/rgci453
* Submission: 11 November 2013; Evaluation: 9 December 2013; Reception
of revised manuscript: 28 February 2014; Accepted: 21 March 2014;
Available on-line: 17 April 2014
Desafios da carcinicultura: aspectos legais, impactos ambientais e alternativas mitigadoras *
Challenges of shrimp farming: legal aspects, environmental impacts and
mitigating alternatives
Luisa Ferreira Ribeiro @, 1, 2, 3, Manuel C. M. B. N. de Souza 1,3,
Francisco Barros 2, 3, Vanessa Hatje 1, 3
@ - Corresponding author: luisa_bio@hotmail.com
1 - Universidade Federal da Bahia (UFBA), Instituto de Química,
Departamento de Química Analítica, Campus Ondina, Salvador, BA
40170-290, Brasil.
2 - Universidade Federal da Bahia (UFBA), Instituto de Biologia,
Departamento de Zoologia, Campus Ondina, Salvador, BA 40170-290, Brasil.
3 - Universidade Federal da Bahia (UFBA), INCT de Ambientes Marinhos Tropicais, 40170-290, Salvador, BA, Brasil.
RESUMO
A aquicultura pode ser definida como o cultivo de organismos aquáticos
em água marinha, salobra ou doce. Entre as diversas atividades que
compõem a aquicultura, a carcinicultura destaca-se por sua ampla
difusão em várias partes do mundo. Este artigo tem como objetivo fazer
uma revisão sobre a carcinicultura e os aspectos legais que controlam
tal atividade, bem como relatar os principais impactos ambientais
gerados e as ações mitigadoras atualmente utilizadas no Brasil. Com o
aumento do número de empreendimentos, houve a necessidade de
regulamentar essa atividade, no entanto, em muitos países, tal
regulamentação não ocorreu de forma específica. Consequentemente, a
carcinicultura vem sendo, em muitos casos, regulada por códigos e leis
adaptados de outros já vigentes. Apesar dos índices econômicos
positivos divulgados pelos produtores e órgãos governamentais, essa
atividade é frequentemente associada a efeitos adversos nos
ecossistemas adjacentes, causados por efluentes liberados pelas
fazendas de camarão, pela destruição de áreas de manguezais e pela
salinização de corpos d’água, entre outros motivos. Problemas
socioeconômicos que afetam as comunidades de pescadores artesanais
também têm sido frequentemente associados às atividades de
carcinicultura. Muitas das alternativas propostas para mitigar os
problemas gerados por essa atividade apresentam um elevado valor para
implantação, dificultando sua incorporação nas fazendas. Uma análise da
literatura indica que é possível tornar a carcinicultura rentável ao
mesmo tempo em que sustentável, por meio da implementação de medidas
mitigadoras e da aplicação das leis e diretrizes existentes.
Palavras-chave: carcinicultura, legislação, impactos ambientais, alternativas mitigadoras.
ABSTRACT
Among
the various activities that are included in the aquaculture, shrimp
farming stands out for its wide dissemination in various parts of the
world. It is clear that, for decades, the global production and
financial performance by shrimp farming achieved excellent results.
However, it is also well accepted that the rapid and often uncontrolled
growth of this activity frequently results in several environmental,
economic and social problems. Thus, critical reviews on this activity
are needed. This paper aims to contextualize the Brazilian shrimp in
the world market, make a brief review on the functioning of shrimp
farms, compare and discuss some important legal aspects and report and
discuss the main environmental impacts and mitigation actions. The
favorable environmental conditions and new technologies motivated the
shrimp production and led Brazil to be one of the largest shrimp
producers in the word. The rapid development and the globally
increasing number of shrimp farm initiatives demanded regulation of the
aquaculture activities. In many countries, including Brazil, this
regulation did not occur specifically for the shrimp farming. As a
result, the shrimp farming is currently regulated by numerous codes and
laws adapted from others related activities. Moreover, states,
municipalities and districts can each develop and apply specific
regulations to control the aquaculture. As a result, there is an
overlap of the governmental actions and policies that makes shrimp
farming regulation a very complex and confusing, and consequently, very
difficult to be applied. Despite the frequent positive economic
indicators obtained by the producers, shrimp farming activity still is
frequently associated with serious negative social and environmental
impacts. The magnitude, frequency and duration of these impacts can be
related to many factors, mostly farm and pound location, nurseries type
and management, production size and types, technology employed and
hydrodynamics of adjacent water bodies. Negative impacts, including
ecological instability, environmental contamination, disease outbreaks,
among others, are often due to lack of adequate development planning
worldwide, and Brazil is no exception. Furthermore, the environmental
and social impacts are associated not only with the installation but
also with the operation of shrimp farms. Several studies suggested that
the negative social impacts associated with aquaculture deserve higher
attention. For instance, some studies suggested that shrimp farming
promote marginalization and migration of traditional communities and
unemployment. Moreover, it can also encourage the rupture of the
traditional ways of shellfish harvesting (gathering) and fisheries
practices, causing social conflicts. Among the reported environmental
problems, loss of mangrove ecological services and other coastal areas,
during the construction and operation of farms, and the abandonment of
these farmed areas are suggested among the most important impacts,
affecting the environment and the economy of traditional communities.
Effluent releases by farms can also have a significant impact in the
nearby natural systems (e.g. estuaries). These effluents are generally
rich in nutrients, causing eutrophication of water bodies and sporadic
toxic algae blooms. The liquid residues of shrimp farming can be loaded
with inorganic elements, such as toxic metals, including mercury.
Antibiotics and antimicrobial agents might also be presented in
effluents once they are widely used to promote biomass grow, better
assimilation of food and treatment of diseases. However, the effects of
antibiotics and antimicrobial agents in the receiving ecosystems are
still poorly studied. There is a demand for high profitability and
rapid growth of shrimp farming activities in Brazil. The negative
impacts of this activity together with the inefficiency of the
regulating agencies may cause several socio-economic and environmental
problems. Nevertheless, there are several mitigating alternatives for
the negative impacts associated with shrimp farming. Most of them are
associated with high costs procedures, frequently hampering their
adoption. Bioremediation, for instance, has been pointed out as the
best alternative to the treatment of waters subject to high loads of
organic contaminants. The recirculating water system (RAS) can remove
most of the contaminants in the water. For the manure and feeding it
has been suggested the use of specific arrangement of the feeders along
the tanks, as a strategy to limit the amount of fertilizer to be
applied. To address the problems related to the use of antibiotics and
antimicrobials the recommendation is the use of medicated feed.
However, none of these aforementioned techniques is efficient without
the adoption of the best management practices. The shrimp farming can
be profitable while sustainable through the implementation of
mitigating alternatives and following good practices that preserves
environment and respect traditional communities.
Keywords: shrimp farming, legislation, impacts, mitigating alternatives.
Abdel-Monem,
A.; Fernandez, L.A.; Boon, G.A. (1975) – K-Ar ages from the eastern
Azores group (Santa Maria, S. Miguel and the Formigas Islands). Lithos,
8:247-254. DOI: 10.1016/0024-4937(75)90008-0
Ammer,
U.; Pröbstl, U.; Mössmer, E.-M. (1986) – Erosion auf Almen. Ein Beitrag
zu aktuellen Fragen des Bodenschutzes. Forstwissenschaftliches
Centralblatt, 105(1):48-59. DOI: 10.1007/BF02741696
Auxtero,
E.; Madeira, M. (2009) – Phosphorus desorbability in soils with andic
properties from the Azores, Portugal. Revista de Ciências Agrárias
(ISSN 0871-018X), 32(1):423-433, Lisboa, Portugal. Avalilable at http://www.scielo.oces.mctes.pt/pdf/rca/v32n1/v32n1a37.pdf
Auxtero,
E.; Madeira, M.; Sousa, E. (2007) – Predicting the degree of
P saturation of selected Andisols from the Azores (Portugal) by the
acidified ammonium oxalate and the Mehlich 3 methods. Revista de
Ciências Agrárias (ISSN 0871-018X), 30(2): 314-325, Lisboa, Portugal.
Avalilable at http://www.scielo.oces.mctes.pt/pdf/rca/v30n2/
v30n2a23.pdf
Azevedo,
J.M.M.; Ferreira, M.R.P. (2006) – The volcanotectonic evolution of
Flores Island, Azores (Portugal). Journal of Volcanology and Geothermal
Research, 156:90-102. DOI: 10.1016/j.jvolgeores.2006.03.011
Azevedo,
J.M.M.; Ferreira, M.P.; Martins, J.A. (1991) – The emergent volcanism
of Flores Island, Azores, (Portugal). Arquipélago (ISSN 0870-6581),
9:37-46, Ponta Delgada, Portugal. Available at http://www.horta.uac.pt/intradop/images/stories/arquipelago/9/
Cap5_AZEVEDO-JMM.pdf
Azevedo,
E.B.; Pereira, L.S.; Itier, B. (1998) – Modelling the local climate in
islands environments. Orographic clouds cover. In: Schemenauer, R.S.;
Bridgman, H. (eds.), First International Conference on Fog and Fog
Collection, pp.433-443. IDRC, Ottawa. ISBN: 0968388701.
Azevedo,
E.B.; Pereira, L.S.; Itier, B. (1999a) – Simulation of local climate in
islands environments using a GIS integrated model. In: Musy, A.;
Pereira, L.S.; Fritsch, M. (eds.), Emerging technologies for
sustainable land use and water management. PPUR, Lausanne. ISBN:
2880744385.
Azevedo, E.B.; Pereira, L.S.;
Itier, B. (1999b) – Modelling the local climate in islands
environments: water balance applications. Agricultural Water
Management, 40(2-3):393-403. DOI: 10.1016/S0378-3774(99)00012-8
Ball,
I.R.; Possingham, H.P.; Watts, M. (2009) – Marxan and relatives:
software for spatial conservation prioritization. In: Moilanen,
A.; Wilson, K.A.; Possingham, H.P. (eds.), Spatial conservation
prioritization: Quantitative methods and computational tools,
pp.185-195, Oxford University Press, Oxford, U.K. ISBN: 0199547777.
Bastos,
R.; Santos, M.; Ramos, J.A.; Vicente, J.; Guerra, C.; Alonso, J.;
Honrado, J.; Ceia, R.S.; Timoteo, S.; Cabral, J.A. (2012) – Testing a
novel spatially-explicit dynamic modelling approach in the scope of the
laurel forest management for the endangered Azores bullfinch (Pyrrhula
murina) conservation. Biological
Conservation, 147(1):243-254. DOI: 10.1016/j.biocon.2012.01.009
Borges,
P.A.V.; Gabriel, R.; Arroz, A.; Costa, A.; Cunha, R.; Silva, L.;
Mendonça, E.; Martins, A.F.; Reis, F.; Cardoso, P. (2010) – The Azorean
Biodiversity Portal: an internet database for regional biodiversity
outreach. Systematics and Biodiversity, 8(4):423-434. DOI: 10.1080/14772000.2010.514306
Borges,
P.A.; Hortal, J. (2009) – Time, area and isolation: factors driving the
diversification of Azorean arthropods. Journal of
Biogeography, 36(1):178-191. DOI: 10.1111/j.1365-2699.2008.01980.x
Borges,
P.A.; Serrano, A.R.; Quartau, J.A. (2000) – Ranking the Azorean natural
forest reserves for conservation using their endemic arthropods.
Journal of Insect Conservation, 4(2):129-147. DOI: 10.1023/A:1009629012205
Bryan,
B.A.; Crossman, N.D.; King, D.; Meyer, W.S. (2011) – Landscape futures
analysis: Assessing the impacts of environmental targets under
alternative spatial policy options and future scenarios. Environmental
Modelling & Software, 26(1):83-91. DOI: 10.1016/j.envsoft.2010.03.034
Bui,
E.N. (2013) – Soil salinity: A neglected factor in plant ecology and
biogeography. Journal of Arid Environments, 92:14-25. DOI: 10.1016/j.jaridenv.2012.12.014
Calado,
H.; Braga, A.; Moniz, F.; Gil, A.; Vergílio, M. (2013) – Spatial
planning and resource use in the Azores. Mitigation and Adaptation
Strategies for Global Change, Published Online in November 2013. DOI: 10.1007/s11027-013-9519-2
Cancela
d’Abreu, A.; Moreira, J.M.; Oliveira, M.R. (Coord.) (2005) – Livro das
paisagens dos Açores: contributos para a identificação e caracterização
das paisagens dos Açores. SRAM/DROTRH, Ponta Delgada. ISBN: 989-2000056.
Capelo, J. (Ed.) (2004) – A paisagem vegetal da Ilha da Madeira. Quercetea (ISSN 0874-5250), 6:3-200, Lisboa, Portugal.
Castellazzi, M.S.; Matthews, J.; Angevin, F.; Sausse, C.; Wood, G.A.;
Burgess, P.J.; Brown, I.; Conrad, K.F.; Perry, J.N. (2010) – Simulation
scenarios of spatio-temporal arrangement of crops at the landscape
scale. Environmental Modelling & Software, 25(12):1881-1889. DOI: 10.1016/j.envsoft.2010.04.006
Cienciala, E.;
Centeio, A.; Blazek, P.; Soares, M.C.G.; Russ, R. (2013) – Estimation
of stem and tree level biomass models for Prosopis
juliflora/pallid applicable to multi-stemmed tree species. Trees,
27(4):1061-1070. DOI: 10.1007/s00468-013-0857-1
Connor,
S.E.; van Leeuwen, J.F.N.; Rittenour, T.M.; van der Knaap, W.O.;
Ammann, B.; Björck, S. (2012) – The ecological impact of oceanic island
colonization – a palaeoecological perspective from the Azores. Journal
of Biogeography, 39(6):1007-1023. DOI: 10.1111/j.1365-2699.2011.02671.x
Costa,
H.; Aranda, S.C.; Lourenco, P.; Medeiros, V.; Azevedo, E.B.; Silva, L.
(2012) – Predicting successful replacement of forest invaders by native
species using species distribution models: The case of Pittosporum
undulatum and Morella faya in the Azores. Forest Ecology and
Management, 279:90-96. DOI: 10.1016/j.foreco.2012.05.022
Costa,
H.; Bettencourt, M.J.; Silva, C.M.N.; Teodósio, J.; Gil, A.; Silva, L.
(2013) – Invasive alien plants in the Azorean protected areas: invasion
status and mitigation actions. In: Foxcroft, L.C.; Richardson, D.M.;
Pyšek, P.; Genovesi, P. (eds.), Plant invasions in protected areas,
pp.375-394, Springer, Dordrecht, Germany. DOI: 10.1007/978-94-007-7750-7_17
Cruz,
C.S. (1994) – Considerações relativas à zonagem fitoecológica do
Arquipélago da Madeira. In: Pinto-Gomes, C. (ed.), Actas do I Colóquio
Internacional de Ecologia da Vegetação, pp.91-113, Universidade de
Évora, Évora, Portugal.
Cruz, J.V.;
Antunes, P.; Amaral, C.; França, Z.; Nunes, J.C. (2006) – Volcanic
lakes of the Azores archipelago (Portugal): Geological setting and
geochemical characterization. Journal of Volcanology and Geothermal
Research, 156(1-2):135-157. DOI: 10.1016/j.jvolgeores.2006.03.008
Davoudi,
S.; Evans, N.; Governa, F.; Santangelo, M. (2008) – Territorial
governance in the making. Approaches, methodologies, practices. Boletín
de la A.G.E. (ISSN 0212-9426), 46:33-52, Madrid, Spain. Available at http://dialnet.unirioja.es/descarga/articulo/2686504/1.pdf
de
Nascimento, L.; Willis, K.J.; Fernández-Palacios, J.M.; Criado, C.;
Whittaker, R.J. (2009) – The long-term ecology of the lost forests of
La Laguna, Tenerife (Canary Islands). Journal of Biogeography,
36(3):499-514. DOI: 10.1111/j.1365-2699.2008.02012.x
del-Arco,
M.J.; Wildpret, W.; Pérez-de-Paz, P.L.; Rodríguez-Delgado, O.; Acebes,
J.R.; García-Gallo, A.; Martín, V.E.; Reyes-Betancourt, J.A.; Salas,
M.; Bermejo, J.A.; González, R.; Cabrera, M.V.; García, S. (2006)
– Mapa de vegetación de Canarias. Grafcan Ediciones, Santa Cruz de
Tenerife, Spain. ISBN: 8461138112
del-Arco,
M.J.; Rodríguez-Delgado, O.; Acebes, J.R.; García-Gallo, A.;
Pérez-de-Paz, P.L.; González-Mancebo, J.M.; González-González, R.;
Garzón-Machado, V. (2009) – Bioclimatology and climatophilous
vegetation of Gomera (Canary Islands). Annales Botanici Fennici (ISSN
0003-3847), 46:161-191, Helsinki, Finland. Available at http://www.sekj.org/PDF/anb46-free/anb46-161.pdf
Dias, E. (2001) – Ecologia e classificação da vegetação natural dos Açores. Cadernos de Botânica 3, Angra do Heroísmo. http://www.angra.uac.pt/GEVA/WEBGEVA/Publicacoes/phd/PhD.htm
Dias,
E.; Mendes, C.; Melo, C.; Pereira, D.; Elias, R. (2005) – Azores
central islands vegetation and flora field guide. Quercetea (ISSN
0874-5250), 7:123-173, Lisboa, Portugal.
Dias,
N.A.; Matias, L.; Lourenço, N.; Madeira, J.; Carrilho, F.; Gaspar, J.L.
(2007) – Crustal seismic velocity structure near Faial and Pico Islands
(AZORES), from local earthquake tomography. Tectonophysics,
445(3-4):301-317. DOI: 10.1016/j.tecto.2007.09.001
Diniz,
A.C.; Matos, G.C. (1986) – Carta da zonagem agro-ecológica e da
vegetação de Cabo Verde. I Ilha de Santiago. Garcia de Orta. Série de
Botânica (ISSN 0379-9506), 8(1-2):39-82, Lisboa, Portugal.
Diniz,
A.C.; Matos, G.C. (1999) – Carta da zonagem agro-ecológica e da
vegetação de Cabo Verde. X Ilha de Santo Antão. Garcia de Orta. Série
de Botânica (ISSN 0379-9506), 14(2):1:34, Lisboa, Portugal.
Diniz,
A.C.; Matos, G.C. (1998) – Zonagem agro-ecológica de Angola (estudo
cobrindo 200000 km2 do território). Instituto de Cooperação Portuguesa,
Lisboa. ISSN: 0379-9506
Dorman, M.; Svoray,
T.; Perevolotsky, A. (2013) – Homogenization in forest performance
across an environmental gradient - The interplay between rainfall and
topographic aspect. Forest Ecology and Management, 310:256-266. DOI: 10.1016/j.foreco.2013.08.026
DROTRH
(2008) – PROTA: Plano Regional de Ordenamento do Território da Região
Autónoma dos Açores. Direcção Regional de Ordenamento do Território e
dos Recursos Hídricos, Secretaria Regional do Ambiente e do Mar,
Governo Regional do Açores. Ponta Delgada.
Duarte,
M.C.; Rego, F.; Romeiras, M.M.; Moreira, I. (2008) – Plant species
richness in the Cape Verde Islands – Eco-geographical determinants.
Biodiversity & Conservation, 17(3):453-466. DOI: 10.1007/s10531-007-9226-y
Etherington,
T.R.; Holland, E.P. (2013) – Least-cost path length versus
accumulated-cost as connectivity measures. Landscape Ecology,
28(7):1223-1229. DOI: 10.1007/s10980-013-9880-2
Feraud,
G.; Kaneoka, I.; Allègre, C.J. (1980) – K/Ar ages and stress pattern in
the Azores: geodynamic implications. Earth and Planetary Science
Letters, 46(2):275-286. DOI: 10.1016/0012-821X(80)90013-8
Fernandes,
J.P. (1993) – ECOGIS/ECOSAD: a methodology for the biophysical
environmental assessment within the planning process. Computers,
Environment and Urban Systems, 17(4):347-354. DOI: 10.1016/0198-9715(93)90031-Y
Fernandes,
J.P. (2000a) – Landscape ecology and conservation management -
evaluation of alternatives in a highway EIA process. Environmental
Impact Assessment Review, 20(6):665-680. DOI: 10.1016/S0195-9255(00)00060-3
Fernandes,
J.P. (2000b) – Data type and scale effects on an EIA process – context
versus object approach: a case study of the evaluation of the impacts
of the A2 road in southern Portugal on the Iberian Lynx. Journal of
Environmental Assessment Policy and Management, 2(1):19-41. DOI: 10.1142/S1464333200000047
Fernandes,
J.P.; Guiomar, N.; Soares, A.S. (2006) – Geometries in landscape
ecology. Journal of Mediterranean Ecology (ISSN 1388-7904),
7(1-4):3-13, Urbino, Italy. Available at http://www.jmecology.com/
%5Cpdf%5C2006%5CFernandes3-13.pdf
Fernández-Palacios,
J.M.; Andersson, C. (2000) – Geographical determinants of the
biological richness in the Macaronesian region. Acta
Phytogeographica Suecica (ISSN 0084-5914), 85:41-50, Sweden. Available
at http://jmferpal.webs.ull.es/
other_scientific_papers_files/APSuecica2000.pdf
Fernández-Palacios,
J.M.; de Nascimento, L.; Otto, R.; Delgado, J.D.; García-del-Rey, E.;
Arévalo, J.R.; Whittaker, R.J. (2011) – A reconstruction of
Palaeo-Macaronesia, with particular reference to the long-term
biogeography of the Atlantic island laurel forests. Journal of
Biogeography, 38(2):226-246. DOI: 10.1111/j.1365-2699.2010.02427.x
Ferreira,
A.B. (2005) – Geodinâmica e perigosidade natural nas ilhas dos Açores.
Finisterra (ISSN 0430-5027), 40:103-120, Lisboa, Portugal. Avalilable
at http://www.ceg.ul.pt/finisterra/numeros/2005-79/79_09.pdf
Flather,
C.H.; Hayward, G.D.; Beissinger, S.R.; Stephens, P.A. (2011) – Minimum
viable populations: is there a ‘magic number’ for conservation
practitioners? Trends in Ecology &
Evolution, 26(6):307-316. DOI: 10.1016/j.tree.2011.03.001
Fonseca,
G.A.B.; Mittermeier, R.A.; Mittermeier, C.G. (2006) – Conservation of
Island biodiversity: importance, challenges and opportunities. 16p.,
Conservation International, Washington DC.
França,
Z.T.M.; Tassinari, C.C.G.; Cruz, J.V.; Aparicio, A.Y.; Araña, V.;
Rodrigues, B.N. (2006) – Petrology, geochemistry and Sr–Nd–Pb isotopes
of the volcanic rocks from Pico Island-Azores (Portugal). Journal of
Volcanology and Geothermal Research, 156(1-2):71-89. DOI: 10.1016/j.jvolgeores.2006.03.013
Furtado,
D.S. (1984) – Status e distribuição das plantas vasculares endémicas
dos Açores. Arquipélago (ISSN 0870-6581), 5:197-209, Ponta Delgada,
Portugal. Available at https://repositorio.uac.pt/bitstream/
10400.3/949/1/Status%20e%20distribui%C3%A7%C3%A3o%20das%
20plantas%20vasculares%20end%C3%A9micas%20dos%20A%C3%
A7ores.pdf
Gil,
A.; Calado, H.; Bentz, J. (2011a) – Public participation in municipal
transport planning processes – The case of the sustainable mobility
plan of Ponta Delgada, Azores, Portugal. Journal of Transport
Geography, 19(6):1309-1319. DOI: 10.1016/j.jtrangeo.2011.06.010
Gil,
A.; Calado, H.; Costa, L.T.; Bentz, J.; Fonseca, C.; Lobo, A.;
Vergilio, M.; Benedicto, J. (2011b) – A methodological proposal for the
development of Natura 2000 sites management plans. Journal of Coastal
Research (ISSN 0749-0208), SI64:1326-1330, Szczecin, Poland. Available
at http://www.eurosite.org/files/SP64_1326-1330_A.Gil_.pdf
Gil,
A.; Lobo, A.; Abadi, M.; Silva, L.; Calado, H. (2013) – Mapping
invasive woody plants in Azores protected areas by using very
high-resolution multispectral imagery. European Journal of Remote
Sensing, 46:289-304. DOI: 10.5721/EuJRS20134616
Gilpin,
M.E.; Soulé, M.E. (1986) – Minimum viable populations: processes of
species extinction. Conservation biology: the science of scarcity
and diversity. In: Soulé, M.E. (ed.), Conservation biology: the science
of scarcity and diversity, pp.19-34, Sinauer Associates, Massachusetts.
ISBN: 0878937951.
Henderson, D.; Jacobson,
S.H.; Johnson, A.W. (2003) – The theory and practice of simulated
annealing. In: Glover, F.; Kochenberger, G.A. (eds.), Handbook of
metaheuristics, pp.287-319, Kluwer Academic Publishers, Dordrecht. DOI:
10.1007/0-306-48056-5_10
Horn, B.K.P. (1981) – Hill shading and the reflectance map. Proceedings of the IEEE, 69:14-47. DOI: 10.1109/PROC.1981.11918
Huston,
M.A. (1999) – Local processes and regional patterns: Appropriate scales
for understanding variation in the diversity of plants and animals.
Oikos, 86:393-401. DOI: 10.2307/3546645
Hutchinson,
M.F. (1989) – A new procedure for gridding elevation and stream line
data with automatic removal of spurious pits. Journal of Hydrology,
106(3-4):211-232. DOI: 10.1016/0022-1694(89)90073-5
Ichter,
J.; Evans, D.; Richard, D. (2014) – Terrestrial habitat mapping in
Europe: an overview. 152p., European Environment Agency, Luxembourg.
ISBN: 978-9292134204 DOI: 10.2800/11055
Jenson,
S.K.; Domingue, J.O. (1988) – Extracting topographic structure from
digital elevation data for geographic information system analysis.
Photogrammetric Engineering and Remote Sensing, 54(11):1593-1600. DOI: 0099-1112)88/5411-1593$02.25/0
Kelly,
M.; Tuxen, K.A.; Stralberg, D. (2011) – Mapping changes to vegetation
pattern in a restoring wetland: Finding pattern metrics that are
consistent across spatial scale and time. Ecological Indicators,
11(2):263-273. DOI: 10.1016/j.ecolind.2010.05.003
Lagabrielle,
E.; Botta, A.; Daré, W.; David, D.; Aubert, S.; Fabricius, C. (2010) –
Modelling with stakeholders to integrate biodiversity into land-use
planning – Lessons learned in Réunion Island (Western Indian Ocean).
Environmental Modelling & Software, 25(11):1413-1425. DOI: 10.1016/j.envsoft.2010.01.011
Laliberté,
E.; Grace, J.B.; Huston, M.A.; Lambers, H.; Teste, F.P.; Turner, B.L.;
Wardle, D.A. (2013) – How does pedogenesis drive plant diversity?
Trends in Ecology & Evolution, 28(6):331-340. DOI: 10.1016/j.tree.2013.02.008
Lamberson,
R.H.; Noon, B.R.; Voss, C.; McKelvey, K.S. (1994) – Reserve design for
territorial species: the effects of patch size and spacing on the
viability of the northern spotted owl. Conservation Biology,
8(1):185-195. DOI: 10.1046/j.1523-1739.1994.08010185.x
Leitão,
A.B.; Ahern, J. (2002) – Applying landscape ecological concepts and
metrics in sustainable landscape planning. Landscape and Urban
Planning, 59(2):65-93. DOI: 10.1016/S0169-2046(02)00005-1
Lourenço,
P.; Medeiros, V.; Gil, A.; Silva, L. (2011) – Distribution, habitat and
biomass of Pittosporum undulatum, the most important woody plant
invader in the Azores Archipelago. Forest Ecology and Management,
262(2):178-187. DOI: 10.1016/j.foreco.2011.03.021
Madeira,
J. (1998) – Estudos de neotectónica nas ilhas do Faial, Pico e S.
Jorge: Uma contribuição para o conhecimento geodinâmico da junção
tripla dos Açores. 481p., PhD dissertation, University of Lisbon.
Madeira,
J.; Brum da Silveira, A. (2003) – Active tectonics and first
paleoseismological results in Faial, Pico and S. Jorge islands (Azores,
Portugal). Annals of Geophysics, 46(5):733-761. DOI: 10.4401/ag-3453.
Madeira,
M.; Pinheiro, P.; Madruga, J.; Monteiro, F. (2007) – Soils of volcanic
systems in Portugal. In: Arnalds, Ó.; Bartoli, F.; Buurman, P.;
Óskarsson, H., Stoops, G.; Garcia-Rodeja, E. (eds.), Soils of volcanic
regions of Europe, pp.69-81, Springer Verlag, Berlin. DOI: 10.1007/978-3-540-48711-1_8
Martín-Martín,
C.; Bunce, R.G.H.; Saura, S.; Elena-Rosselló, R. (2013) – Changes and
interactions between forest landscape connectivity and burnt area in
Spain. Ecological Indicators, 33:129-138. DOI: 10.1016/j.ecolind.2013.01.018
Martins,
A.M.F. (1993) – The Azores – westernmost Europe: where evolution can be
caught red-handed. Boletim do Museu Municipal do Funchal (ISSN
0870-3876), S2:181-198, Funchal, Portugal.
Moeslund,
J.E.; Arge, L.; Bøcher, P.K.; Dalgaard, T.; Svenning, J.-C. (2013) –
Topography as a driver of local terrestrial vascular plant diversity
patterns. Nordic Journal of Botany, 31(2):129-144. DOI: 10.1111/j.1756-1051.2013.00082.x
Moreira,
M. (2013) – Valoração da biodiversidade no Parque Natural de Ilha
do Pico através da metodologia InVEST. Relatório
técnico desenvolvido no âmbito do Projeto SMARTPARKS – Sistema de
Ordenamento e Gestão de Áreas Protegidas em
Pequenas Ilhas (PTDC/AAC-AMB/098786/2008), 37 p.,
Universidade dos Açores, Ponta Delgada. Unpublished.
Nogué,
S.; de Nascimento, L.; Fernández-Palacios, J.M.; Whittaker, R.J.;
Willis, K.J. (2013) – The ancient forests of La Gomera, Canary Islands,
and their sensitivity to environmental change. Journal of Ecology,
101(2):368-377. DOI: 10.1111/1365-2745.12051
Nunes,
J.C.C. (1999) – A actividade vulcânica na Ilha do Pico do Plistocénico
Superior ao Holocénico: mecanismo eruptivo e hazard vulcânico. 357p.,
PhD dissertation, University of Azores. Unpublished.
Pinheiro,
J.; Madeira, M.; Medina, J.; Sampaio, J.; Madruga, J. (1998) – Andisols
of the Azores Archipelago (Portugal). Characteristics and
classification. XVI World Congress of Soil Science. Montpellier.,
France
Pinheiro, J.; Sampaio, J.; Madruga,
J. (1987) – Carta de capacidade de uso do solo da Região Autónoma dos
Açores. Departamento de Ciências Agrárias, Universidade dos Açores,
Angra do Heroísmo. Unpublished.
Possingham,
H.P.; Wilson, K.A.; Andelman, S.J.; Vynne, C.H. (2006) – Protected
areas: goals, limitations, and design. In: Groom, M.J.; Meffe, G.K.;
Carroll, C.R. (eds.), Principles of conservation biology, 3rd ed.,
pp.509-533, Sinauer Associates Inc., Sunderland. ISBN: 0878935975.
Richard,
Y.; Armstrong, D.P. (2010) – Cost distance modelling of landscape
connectivity and gap-crossing ability using radio-tracking data.
Journal of Applied Ecology, 47(3):603-610. DOI: 10.1111/j.1365-2664.2010.01806.x
Robertson,
P.; Bainbridge, I.; Soye, Y. (2011) – Priorities for conserving
biodiversity on European islands. Convention on the conservation of
European wildlife and natural habitats. Standing Committee, Strasbourg,
France. http://www.ebcd.org/pdf/en/327-Priorities_for_
Conserving_Biodiversity_on_European_Islands.pdf
Rodríguez‐Sánchez,
F.; Arroyo, J. (2008) – Reconstructing the demise of Tethyan plants:
climate‐driven range dynamics of Laurus since the Pliocene. Global
Ecology & Biogeography, 17(6):685-695. DOI: 10.1111/j.1466-8238.2008.00410.x
Rodríguez‐Sánchez,
F.; Guzmán, B.; Valido, A.; Vargas, P.; Arroyo, J. (2009) – Late
Neogene history of the laurel tree (Laurus L., Lauraceae) based on
phylogeographical analyses of Mediterranean and Macaronesian
populations. Journal of Biogeography, 36(7):1270-1281. DOI: 10.1111/j.1365-2699.2009.02091.x
Saffache,
P.; Angelelli, P. (2010) – Integrated coastal zone management in small
islands: A comparative outline of some islands of the Lesser Antilles.
Revista de Gestão Costeira Integrada / Journal of Integrated Coastal
Zone Management, 10(3):255-279. DOI: 10.5894/rgci228
Santos,
C.F.S.; Gomes de Oliveira, A. (2013) – Land use mapping in a protected
area of Lagoas de Guarajuba in Camacari, Bahia, Brazil. Revista de
Gestão Costeira Integrada / Journal of Integrated Coastal Zone
Management, 13(3):391-397. DOI: 10.5894/rgci396
Saunders,
D.A.; Hobbs, R.J.; Margules, C.R. (1991) – Biological consequences of
ecosystem fragmentation: a review. Conservation Biology, 5(1):18-32.
DOI: 10.1111/j.1523-1739.1991.tb00384.x
Schaefer,
H.; Hardy, O.J.; Silva, L.; Barraclough, T.G.; Savolainen, V. (2011) –
Testing Darwin’s naturalization hypothesis in the Azores. Ecology
Letters, 14(4):389-396. DOI: 10.1111/j.1461-0248.2011.01600.x
Schirone,
B.; Ferreira, R.C.; Vessella, F.; Schirone, A.; Piredda, R.; Simeone,
M.C. (2010) – Taxus baccata in the Azores: a relict form at risk of
imminent extinction. Biodiversity & Conservation, 19(6):1547-1565.
DOI: 10.1007/s10531-010-9786-0
Shaffer, M.L. (1981) – Minimum population sizes for species conservation. BioScience, 31(2):131-134. DOI: 10.2307/1308256
Silva,
L.; Smith, C. (2006) – A quantitative approach to the study of
non-indigenous plants: an example from the Azores Archipelago.
Biodiversity & Conservation, 15(5):1661-1679. DOI: 10.1007/s10531-004-5015-z
Silva,
L.; Tavares J. (1997) – Factors affecting Myrica faya Aiton demography
in the Azores. Açoreana (ISSN 0874-0380), 8(3):359-374, Ponta Delgada,
Portugal. Available at https://repositorio.uac.pt/
bitstream/10400.3/796/1/Factors%20affecting%20Myrica%20faya%
20Aiton%20demography%20in%20the%20Azores.pdf
Silveira,
P.; Dentinho, T. (2010) – Spatial interaction model of land use – An
application to Corvo Island from the 16th, 19th and 20th centuries.
Computers, Environment and Urban Systems, 34(2):91-103. DOI: 10.1016/j.compenvurbsys.2009.10.003
Sjögren,
E. (2000) – Aspects on the biogeography of Macaronesia from a botanical
point of view. Arquipélago (ISSN 0873-4704), S2PA:1-9, Ponta Delgada,
Açores, Portugal. Available at http://www.db.uac.pt/pdf/
faunaA/4_aspect.pdf
Smith, R.J. (2004) – Conservation Land-Use Zoning (CLUZ) software. Durrell Institute of Conservation and Ecology, Canterbury. http://anotherbobsmith.files.wordpress.com/2013/03/cluz_guide.pdf
Stephenson,
N.L. (1990) – Climatic control of vegetation distribution: the role of
water balance. The American Naturalist, 135(5):649-670. DOI: 10.1086/285067
Triantis,
K.A.; Borges, P.A.V.; Ladle, R.J.; Hortal, J.; Cardoso, P.; Gaspar, C.;
Dinis, F.; Mendonça, E.; Silveira, L.M.A.; Gabriel, R.; Melo, C.;
Santos, A.M.C.; Amorim, I.R.; Ribeiro, S.P.; Serrano, A.R.M.; Quartau,
J.A.; Whittaker, R.J. (2010) – Extinction debt on oceanic islands.
Ecography, 33(2):285-294. DOI: 10.1111/j.1600-0587.2010.06203.x
Tscharntke,
T.; Steffan‐Dewenter, I.; Kruess, A.; Thies, C. (2002) –
Characteristics of insect populations on habitat fragments: a mini
review. Ecological Research, 17(2):229-239. DOI: 10.1046/j.1440-1703.2002.00482.x
Vanderpoorten,
A.; Rumsey, F.J.; Carine, M.A. (2007) – Does Macaronesia exist?
Conflicting signal in the bryophyte and pteridophyte
floras. American Journal of Botany, 94(4):625-639. DOI: 10.3732/ajb.94.4.625
Vargas,
P. (2007) – Are Macaronesian islands refugia of relict plant lineages?:
A molecular survey. In: Weiss, S.; Ferrand, N. (eds.), Phylogeography
of Southern European refugia, pp. 297-314, Springer, Netherlands. DOI: 10.1007/1-4020-4904-8_11
Wahba,
G. (1990) – Spline models for observational data. CBMS-NSF Regional
Conference Series in Applied Mathematics, Society for Industrial and
Applied Mathematics, Philadelphia.
Watts,
K.; Handley, P. (2010) – Developing a functional connectivity indicator
to detect change in fragmented landscapes. Ecological Indicators,
10(2):552-557. DOI: 10.1016/j.ecolind.2009.07.009
Weigelt,
P.; Kreft, H. (2012) – Quantifying island isolation - Insights from
global patterns of insular plant species richness. Ecography,
36(4):417-429. DOI: 10.1111/j.1600-0587.2012.07669.x
Wong,
P.P.; Marone, E.; Lana, P.; Fortes, M. (coord.) (2005) – Island
systems. In: Hassan, R.; Schales, R.; Ash, N. (ed.), Ecosystems and
human well-being: current state and trends, pp.663-680, Island Press,
Washington DC. ISBN: 1559632275.
Wright,
J.P.; Flecker, A.S.; Jones, C.G. (2003) – Local vs. landscape controls
on plant species richness in beaver meadows. Ecology, 84(12):3162-3173.
DOI: 10.1890/02-0598
Yanes,
M.C.M.; Aguilar, M.C.A.; Vernet, J.-L.; Ourcival, J.-M. (1997) – Man
and vegetation in northern Tenerife (Canary Islands, Spain), during the
prehispanic period based on charcoal analyses. Vegetation History and
Archaeobotany, 6(3):187-195. DOI: 10.1007/BF01372570
Zelený,
D.; Li, C.-F.; Chytrý, M. (2010) – Pattern of local plant species
richness along a gradient of landscape topographical heterogeneity:
result of spatial mass effect or environmental shift? Ecography,
33(3):578-589. DOI: 10.1111/j.1600-0587.2009.05762.x
Zonneveld, I.S. (1989) – The land unit – A fundamental concept in landscape ecology, and its applications. Landscape Ecology, 3(2):67-86. DOI: 10.1007/BF00131171
em construção