Menu:

 

 

Volume 14, Issue 3 - September 2014

 

Download (1.100KB, PDF)

 

  • Abstract / Resumo
  • References / Bibliografia
  • Citations / Citações

Revista de Gestão Costeira Integrada
Volume 14, Número 3, Setembro 2014, Páginas 365-383

DOI: 10.5894/rgci453
* Submission: 11 November 2013; Evaluation: 9 December 2013; Reception of revised manuscript: 28 February 2014; Accepted: 21 March 2014; Available on-line: 17 April 2014

Desafios da carcinicultura: aspectos legais, impactos ambientais e alternativas mitigadoras *

Challenges of shrimp farming: legal aspects, environmental impacts and mitigating alternatives

Luisa Ferreira Ribeiro @, 1, 2, 3, Manuel C. M. B. N. de Souza 1,3,
Francisco Barros 2, 3, Vanessa Hatje 1, 3


@ - Corresponding author: luisa_bio@hotmail.com
1 - Universidade Federal da Bahia (UFBA), Instituto de Química, Departamento de Química Analítica, Campus Ondina, Salvador, BA 40170-290, Brasil.
2 - Universidade Federal da Bahia (UFBA), Instituto de Biologia, Departamento de Zoologia, Campus Ondina, Salvador, BA 40170-290, Brasil.
3 - Universidade Federal da Bahia (UFBA), INCT de Ambientes Marinhos Tropicais, 40170-290, Salvador, BA, Brasil.


RESUMO
A aquicultura pode ser definida como o cultivo de organismos aquáticos em água marinha, salobra ou doce. Entre as diversas atividades que compõem a aquicultura, a carcinicultura destaca-se por sua ampla difusão em várias partes do mundo. Este artigo tem como objetivo fazer uma revisão sobre a carcinicultura e os aspectos legais que controlam tal atividade, bem como relatar os principais impactos ambientais gerados e as ações mitigadoras atualmente utilizadas no Brasil. Com o aumento do número de empreendimentos, houve a necessidade de regulamentar essa atividade, no entanto, em muitos países, tal regulamentação não ocorreu de forma específica. Consequentemente, a carcinicultura vem sendo, em muitos casos, regulada por códigos e leis adaptados de outros já vigentes. Apesar dos índices econômicos positivos divulgados pelos produtores e órgãos governamentais, essa atividade é frequentemente associada a efeitos adversos nos ecossistemas adjacentes, causados por efluentes liberados pelas fazendas de camarão, pela destruição de áreas de manguezais e pela salinização de corpos d’água, entre outros motivos. Problemas socioeconômicos que afetam as comunidades de pescadores artesanais também têm sido frequentemente associados às atividades de carcinicultura. Muitas das alternativas propostas para mitigar os problemas gerados por essa atividade apresentam um elevado valor para implantação, dificultando sua incorporação nas fazendas. Uma análise da literatura indica que é possível tornar a carcinicultura rentável ao mesmo tempo em que sustentável, por meio da implementação de medidas mitigadoras e da aplicação das leis e diretrizes existentes.

Palavras-chave: carcinicultura, legislação, impactos ambientais, alternativas mitigadoras.

ABSTRACT
Among the various activities that are included in the aquaculture, shrimp farming stands out for its wide dissemination in various parts of the world. It is clear that, for decades, the global production and financial performance by shrimp farming achieved excellent results. However, it is also well accepted that the rapid and often uncontrolled growth of this activity frequently results in several environmental, economic and social problems. Thus, critical reviews on this activity are needed. This paper aims to contextualize the Brazilian shrimp in the world market, make a brief review on the functioning of shrimp farms, compare and discuss some important legal aspects and report and discuss the main environmental impacts and mitigation actions. The favorable environmental conditions and new technologies motivated the shrimp production and led Brazil to be one of the largest shrimp producers in the word. The rapid development and the globally increasing number of shrimp farm initiatives demanded regulation of the aquaculture activities. In many countries, including Brazil, this regulation did not occur specifically for the shrimp farming. As a result, the shrimp farming is currently regulated by numerous codes and laws adapted from others related activities. Moreover, states, municipalities and districts can each develop and apply specific regulations to control the aquaculture. As a result, there is an overlap of the governmental actions and policies that makes shrimp farming regulation a very complex and confusing, and consequently, very difficult to be applied. Despite the frequent positive economic indicators obtained by the producers, shrimp farming activity still is frequently associated with serious negative social and environmental impacts. The magnitude, frequency and duration of these impacts can be related to many factors, mostly farm and pound location, nurseries type and management, production size and types, technology employed and hydrodynamics of adjacent water bodies. Negative impacts, including ecological instability, environmental contamination, disease outbreaks, among others, are often due to lack of adequate development planning worldwide, and Brazil is no exception. Furthermore, the environmental and social impacts are associated not only with the installation but also with the operation of shrimp farms. Several studies suggested that the negative social impacts associated with aquaculture deserve higher attention. For instance, some studies suggested that shrimp farming promote marginalization and migration of traditional communities and unemployment. Moreover, it can also encourage the rupture of the traditional ways of shellfish harvesting (gathering) and fisheries practices, causing social conflicts. Among the reported environmental problems, loss of mangrove ecological services and other coastal areas, during the construction and operation of farms, and the abandonment of these farmed areas are suggested among the most important impacts, affecting the environment and the economy of traditional communities. Effluent releases by farms can also have a significant impact in the nearby natural systems (e.g. estuaries). These effluents are generally rich in nutrients, causing eutrophication of water bodies and sporadic toxic algae blooms. The liquid residues of shrimp farming can be loaded with inorganic elements, such as toxic metals, including mercury. Antibiotics and antimicrobial agents might also be presented in effluents once they are widely used to promote biomass grow, better assimilation of food and treatment of diseases. However, the effects of antibiotics and antimicrobial agents in the receiving ecosystems are still poorly studied. There is a demand for high profitability and rapid growth of shrimp farming activities in Brazil. The negative impacts of this activity together with the inefficiency of the regulating agencies may cause several socio-economic and environmental problems. Nevertheless, there are several mitigating alternatives for the negative impacts associated with shrimp farming. Most of them are associated with high costs procedures, frequently hampering their adoption. Bioremediation, for instance, has been pointed out as the best alternative to the treatment of waters subject to high loads of organic contaminants. The recirculating water system (RAS) can remove most of the contaminants in the water. For the manure and feeding it has been suggested the use of specific arrangement of the feeders along the tanks, as a strategy to limit the amount of fertilizer to be applied. To address the problems related to the use of antibiotics and antimicrobials the recommendation is the use of medicated feed. However, none of these aforementioned techniques is efficient without the adoption of the best management practices. The shrimp farming can be profitable while sustainable through the implementation of mitigating alternatives and following good practices that preserves environment and respect traditional communities.

Keywords: shrimp farming, legislation, impacts, mitigating alternatives.

 

Abdel-Monem, A.; Fernandez, L.A.; Boon, G.A. (1975) – K-Ar ages from the eastern Azores group (Santa Maria, S. Miguel and the Formigas Islands). Lithos, 8:247-254. DOI: 10.1016/0024-4937(75)90008-0

Ammer, U.; Pröbstl, U.; Mössmer, E.-M. (1986) – Erosion auf Almen. Ein Beitrag zu aktuellen Fragen des Bodenschutzes. Forstwissenschaftliches Centralblatt, 105(1):48-59. DOI: 10.1007/BF02741696

Auxtero, E.; Madeira, M. (2009) – Phosphorus desorbability in soils with andic properties from the Azores, Portugal. Revista de Ciências Agrárias (ISSN 0871-018X), 32(1):423-433, Lisboa, Portugal. Avalilable at http://www.scielo.oces.mctes.pt/pdf/rca/v32n1/v32n1a37.pdf

Auxtero, E.; Madeira, M.;  Sousa, E. (2007) – Predicting the degree of P saturation of selected Andisols from the Azores (Portugal) by the acidified ammonium oxalate and the Mehlich 3 methods. Revista de Ciências Agrárias (ISSN 0871-018X), 30(2): 314-325, Lisboa, Portugal. Avalilable at http://www.scielo.oces.mctes.pt/pdf/rca/v30n2/
v30n2a23.pdf

Azevedo, J.M.M.; Ferreira, M.R.P. (2006) – The volcanotectonic evolution of Flores Island, Azores (Portugal). Journal of Volcanology and Geothermal Research, 156:90-102. DOI: 10.1016/j.jvolgeores.2006.03.011

Azevedo, J.M.M.; Ferreira, M.P.; Martins, J.A. (1991) – The emergent volcanism of Flores Island, Azores, (Portugal). Arquipélago (ISSN 0870-6581), 9:37-46, Ponta Delgada, Portugal. Available at http://www.horta.uac.pt/intradop/images/stories/arquipelago/9/
Cap5_AZEVEDO-JMM.pdf

Azevedo, E.B.; Pereira, L.S.; Itier, B. (1998) – Modelling the local climate in islands environments. Orographic clouds cover. In: Schemenauer, R.S.; Bridgman, H. (eds.), First International Conference on Fog and Fog Collection, pp.433-443. IDRC, Ottawa. ISBN: 0968388701.

Azevedo, E.B.; Pereira, L.S.; Itier, B. (1999a) – Simulation of local climate in islands environments using a GIS integrated model. In: Musy, A.; Pereira, L.S.; Fritsch, M. (eds.), Emerging technologies for sustainable land use and water management. PPUR, Lausanne. ISBN: 2880744385.

Azevedo, E.B.; Pereira, L.S.; Itier, B. (1999b) – Modelling the local climate in islands environments: water balance applications. Agricultural Water Management, 40(2-3):393-403. DOI: 10.1016/S0378-3774(99)00012-8

Ball, I.R.; Possingham, H.P.; Watts, M. (2009) – Marxan and relatives: software for spatial conservation prioritization. In:  Moilanen, A.; Wilson, K.A.; Possingham, H.P. (eds.), Spatial conservation prioritization: Quantitative methods and computational tools, pp.185-195, Oxford University Press, Oxford, U.K. ISBN: 0199547777.

Bastos, R.; Santos, M.; Ramos, J.A.; Vicente, J.; Guerra, C.; Alonso, J.; Honrado, J.; Ceia, R.S.; Timoteo, S.; Cabral, J.A. (2012) – Testing a novel spatially-explicit dynamic modelling approach in the scope of the laurel forest management for the endangered Azores bullfinch (Pyrrhula murina) conservation. Biological Conservation, 147(1):243-254. DOI: 10.1016/j.biocon.2012.01.009

Borges, P.A.V.; Gabriel, R.; Arroz, A.; Costa, A.; Cunha, R.; Silva, L.; Mendonça, E.; Martins, A.F.; Reis, F.; Cardoso, P. (2010) – The Azorean Biodiversity Portal: an internet database for regional biodiversity outreach. Systematics and Biodiversity, 8(4):423-434. DOI: 10.1080/14772000.2010.514306

Borges, P.A.; Hortal, J. (2009) – Time, area and isolation: factors driving the diversification of Azorean arthropods. Journal of Biogeography, 36(1):178-191. DOI: 10.1111/j.1365-2699.2008.01980.x

Borges, P.A.; Serrano, A.R.; Quartau, J.A. (2000) – Ranking the Azorean natural forest reserves for conservation using their endemic arthropods. Journal of Insect Conservation, 4(2):129-147. DOI: 10.1023/A:1009629012205

Bryan, B.A.; Crossman, N.D.; King, D.; Meyer, W.S. (2011) – Landscape futures analysis: Assessing the impacts of environmental targets under alternative spatial policy options and future scenarios. Environmental Modelling & Software, 26(1):83-91. DOI: 10.1016/j.envsoft.2010.03.034

Bui, E.N. (2013) – Soil salinity: A neglected factor in plant ecology and biogeography. Journal of Arid Environments, 92:14-25. DOI: 10.1016/j.jaridenv.2012.12.014

Calado, H.; Braga, A.; Moniz, F.; Gil, A.; Vergílio, M. (2013) – Spatial planning and resource use in the Azores. Mitigation and Adaptation Strategies for Global Change, Published Online in November 2013. DOI: 10.1007/s11027-013-9519-2

Cancela d’Abreu, A.; Moreira, J.M.; Oliveira, M.R. (Coord.) (2005) – Livro das paisagens dos Açores: contributos para a identificação e caracterização das paisagens dos Açores. SRAM/DROTRH, Ponta Delgada. ISBN: 989-2000056.

Capelo, J. (Ed.) (2004) – A paisagem vegetal da Ilha da Madeira. Quercetea (ISSN 0874-5250), 6:3-200, Lisboa, Portugal.
Castellazzi, M.S.; Matthews, J.; Angevin, F.; Sausse, C.; Wood, G.A.; Burgess, P.J.; Brown, I.; Conrad, K.F.; Perry, J.N. (2010) – Simulation scenarios of spatio-temporal arrangement of crops at the landscape scale. Environmental Modelling & Software, 25(12):1881-1889. DOI: 10.1016/j.envsoft.2010.04.006

Cienciala, E.; Centeio, A.; Blazek, P.; Soares, M.C.G.; Russ, R. (2013) – Estimation of stem and tree level biomass models for Prosopis juliflora/pallid applicable to multi-stemmed tree species. Trees, 27(4):1061-1070. DOI: 10.1007/s00468-013-0857-1

Connor, S.E.; van Leeuwen, J.F.N.; Rittenour, T.M.; van der Knaap, W.O.; Ammann, B.; Björck, S. (2012) – The ecological impact of oceanic island colonization – a palaeoecological perspective from the Azores. Journal of Biogeography, 39(6):1007-1023. DOI: 10.1111/j.1365-2699.2011.02671.x

Costa, H.; Aranda, S.C.; Lourenco, P.; Medeiros, V.; Azevedo, E.B.; Silva, L. (2012) – Predicting successful replacement of forest invaders by native species using species distribution models: The case of Pittosporum undulatum and Morella faya in the Azores. Forest Ecology and Management, 279:90-96. DOI: 10.1016/j.foreco.2012.05.022

Costa, H.; Bettencourt, M.J.; Silva, C.M.N.; Teodósio, J.; Gil, A.; Silva, L. (2013) – Invasive alien plants in the Azorean protected areas: invasion status and mitigation actions. In: Foxcroft, L.C.; Richardson, D.M.; Pyšek, P.; Genovesi, P. (eds.), Plant invasions in protected areas, pp.375-394, Springer, Dordrecht, Germany. DOI: 10.1007/978-94-007-7750-7_17

Cruz, C.S. (1994) – Considerações relativas à zonagem fitoecológica do Arquipélago da Madeira. In: Pinto-Gomes, C. (ed.), Actas do I Colóquio Internacional de Ecologia da Vegetação, pp.91-113, Universidade de Évora, Évora, Portugal.

Cruz, J.V.; Antunes, P.; Amaral, C.; França, Z.; Nunes, J.C. (2006) – Volcanic lakes of the Azores archipelago (Portugal): Geological setting and geochemical characterization. Journal of Volcanology and Geothermal Research, 156(1-2):135-157. DOI: 10.1016/j.jvolgeores.2006.03.008

Davoudi, S.; Evans, N.; Governa, F.; Santangelo, M. (2008) – Territorial governance in the making. Approaches, methodologies, practices. Boletín de la A.G.E. (ISSN 0212-9426), 46:33-52, Madrid, Spain. Available at http://dialnet.unirioja.es/descarga/articulo/2686504/1.pdf

de Nascimento, L.; Willis, K.J.; Fernández-Palacios, J.M.; Criado, C.; Whittaker, R.J. (2009) – The long-term ecology of the lost forests of La Laguna, Tenerife (Canary Islands). Journal of Biogeography, 36(3):499-514. DOI: 10.1111/j.1365-2699.2008.02012.x

del-Arco, M.J.; Wildpret, W.; Pérez-de-Paz, P.L.; Rodríguez-Delgado, O.; Acebes, J.R.; García-Gallo, A.; Martín, V.E.; Reyes-Betancourt, J.A.; Salas, M.; Bermejo, J.A.; González, R.; Cabrera, M.V.; García, S. (2006) – Mapa de vegetación de Canarias. Grafcan Ediciones, Santa Cruz de Tenerife, Spain. ISBN: 8461138112

del-Arco, M.J.; Rodríguez-Delgado, O.; Acebes, J.R.; García-Gallo, A.; Pérez-de-Paz, P.L.; González-Mancebo, J.M.; González-González, R.; Garzón-Machado, V. (2009) – Bioclimatology and climatophilous vegetation of Gomera (Canary Islands). Annales Botanici Fennici (ISSN 0003-3847), 46:161-191, Helsinki, Finland. Available at http://www.sekj.org/PDF/anb46-free/anb46-161.pdf

Dias, E. (2001) – Ecologia e classificação da vegetação natural dos Açores. Cadernos de Botânica 3, Angra do Heroísmo. http://www.angra.uac.pt/GEVA/WEBGEVA/Publicacoes/phd/PhD.htm

Dias, E.; Mendes, C.; Melo, C.; Pereira, D.; Elias, R. (2005) – Azores central islands vegetation and flora field guide. Quercetea (ISSN 0874-5250), 7:123-173, Lisboa, Portugal.

Dias, N.A.; Matias, L.; Lourenço, N.; Madeira, J.; Carrilho, F.; Gaspar, J.L. (2007) – Crustal seismic velocity structure near Faial and Pico Islands (AZORES), from local earthquake tomography. Tectonophysics, 445(3-4):301-317. DOI: 10.1016/j.tecto.2007.09.001

Diniz, A.C.; Matos, G.C. (1986) – Carta da zonagem agro-ecológica e da vegetação de Cabo Verde. I Ilha de Santiago. Garcia de Orta. Série de Botânica (ISSN 0379-9506), 8(1-2):39-82, Lisboa, Portugal.

Diniz, A.C.; Matos, G.C. (1999) – Carta da zonagem agro-ecológica e da vegetação de Cabo Verde. X Ilha de Santo Antão. Garcia de Orta. Série de Botânica (ISSN 0379-9506), 14(2):1:34, Lisboa, Portugal.

Diniz, A.C.; Matos, G.C. (1998) – Zonagem agro-ecológica de Angola (estudo cobrindo 200000 km2 do território). Instituto de Cooperação Portuguesa, Lisboa. ISSN: 0379-9506

Dorman, M.; Svoray, T.; Perevolotsky, A. (2013) – Homogenization in forest performance across an environmental gradient - The interplay between rainfall and topographic aspect. Forest Ecology and Management, 310:256-266. DOI: 10.1016/j.foreco.2013.08.026

DROTRH (2008) – PROTA: Plano Regional de Ordenamento do Território da Região Autónoma dos Açores. Direcção Regional de Ordenamento do Território e dos Recursos Hídricos, Secretaria Regional do Ambiente e do Mar, Governo Regional do Açores. Ponta Delgada.

Duarte, M.C.; Rego, F.; Romeiras, M.M.; Moreira, I. (2008) – Plant species richness in the Cape Verde Islands – Eco-geographical determinants. Biodiversity & Conservation, 17(3):453-466. DOI: 10.1007/s10531-007-9226-y

Etherington, T.R.; Holland, E.P. (2013) – Least-cost path length versus accumulated-cost as connectivity measures. Landscape Ecology, 28(7):1223-1229. DOI: 10.1007/s10980-013-9880-2

Feraud, G.; Kaneoka, I.; Allègre, C.J. (1980) – K/Ar ages and stress pattern in the Azores: geodynamic implications. Earth and Planetary Science Letters, 46(2):275-286. DOI: 10.1016/0012-821X(80)90013-8

Fernandes, J.P. (1993) – ECOGIS/ECOSAD: a methodology for the biophysical environmental assessment within the planning process. Computers, Environment and Urban Systems, 17(4):347-354. DOI: 10.1016/0198-9715(93)90031-Y

Fernandes, J.P. (2000a) – Landscape ecology and conservation management - evaluation of alternatives in a highway EIA process. Environmental Impact Assessment Review, 20(6):665-680. DOI: 10.1016/S0195-9255(00)00060-3

Fernandes, J.P. (2000b) – Data type and scale effects on an EIA process – context versus object approach: a case study of the evaluation of the impacts of the A2 road in southern Portugal on the Iberian Lynx. Journal of Environmental Assessment Policy and Management, 2(1):19-41. DOI: 10.1142/S1464333200000047

Fernandes, J.P.; Guiomar, N.; Soares, A.S. (2006) – Geometries in landscape ecology. Journal of Mediterranean Ecology (ISSN 1388-7904), 7(1-4):3-13, Urbino, Italy. Available at http://www.jmecology.com/
%5Cpdf%5C2006%5CFernandes3-13.pdf

Fernández-Palacios, J.M.; Andersson, C. (2000) – Geographical determinants of the biological richness in the Macaronesian region. Acta Phytogeographica Suecica (ISSN 0084-5914), 85:41-50, Sweden. Available at http://jmferpal.webs.ull.es/
other_scientific_papers_files/APSuecica2000.pdf

Fernández-Palacios, J.M.; de Nascimento, L.; Otto, R.; Delgado, J.D.; García-del-Rey, E.; Arévalo, J.R.; Whittaker, R.J. (2011) – A reconstruction of Palaeo-Macaronesia, with particular reference to the long-term biogeography of the Atlantic island laurel forests. Journal of Biogeography, 38(2):226-246. DOI: 10.1111/j.1365-2699.2010.02427.x

Ferreira, A.B. (2005) – Geodinâmica e perigosidade natural nas ilhas dos Açores. Finisterra (ISSN 0430-5027), 40:103-120, Lisboa, Portugal. Avalilable at http://www.ceg.ul.pt/finisterra/numeros/2005-79/79_09.pdf

Flather, C.H.; Hayward, G.D.; Beissinger, S.R.; Stephens, P.A. (2011) – Minimum viable populations: is there a ‘magic number’ for conservation practitioners? Trends in Ecology & Evolution, 26(6):307-316. DOI: 10.1016/j.tree.2011.03.001

Fonseca, G.A.B.; Mittermeier, R.A.; Mittermeier, C.G. (2006) – Conservation of Island biodiversity: importance, challenges and opportunities. 16p., Conservation International, Washington DC.

França, Z.T.M.; Tassinari, C.C.G.; Cruz, J.V.; Aparicio, A.Y.; Araña, V.; Rodrigues, B.N. (2006) – Petrology, geochemistry and Sr–Nd–Pb isotopes of the volcanic rocks from Pico Island-Azores (Portugal). Journal of Volcanology and Geothermal Research, 156(1-2):71-89. DOI: 10.1016/j.jvolgeores.2006.03.013

Furtado, D.S. (1984) – Status e distribuição das plantas vasculares endémicas dos Açores. Arquipélago (ISSN 0870-6581), 5:197-209, Ponta Delgada, Portugal. Available at https://repositorio.uac.pt/bitstream/
10400.3/949/1/Status%20e%20distribui%C3%A7%C3%A3o%20das%
20plantas%20vasculares%20end%C3%A9micas%20dos%20A%C3%
A7ores.pdf

Gil, A.; Calado, H.; Bentz, J. (2011a) – Public participation in municipal transport planning processes – The case of the sustainable mobility plan of Ponta Delgada, Azores, Portugal. Journal of Transport Geography, 19(6):1309-1319. DOI: 10.1016/j.jtrangeo.2011.06.010

Gil, A.; Calado, H.; Costa, L.T.; Bentz, J.; Fonseca, C.; Lobo, A.; Vergilio, M.; Benedicto, J. (2011b) – A methodological proposal for the development of Natura 2000 sites management plans. Journal of Coastal Research (ISSN 0749-0208), SI64:1326-1330, Szczecin, Poland. Available at http://www.eurosite.org/files/SP64_1326-1330_A.Gil_.pdf

Gil, A.; Lobo, A.; Abadi, M.; Silva, L.; Calado, H. (2013) – Mapping invasive woody plants in Azores protected areas by using very high-resolution multispectral imagery. European Journal of Remote Sensing, 46:289-304. DOI: 10.5721/EuJRS20134616

Gilpin, M.E.; Soulé, M.E. (1986) – Minimum viable populations: processes of species extinction. Conservation biology: the science of scarcity and diversity. In: Soulé, M.E. (ed.), Conservation biology: the science of scarcity and diversity, pp.19-34, Sinauer Associates, Massachusetts. ISBN: 0878937951.

Henderson, D.; Jacobson, S.H.; Johnson, A.W. (2003) – The theory and practice of simulated annealing. In: Glover, F.; Kochenberger, G.A. (eds.), Handbook of metaheuristics, pp.287-319, Kluwer Academic Publishers, Dordrecht. DOI: 10.1007/0-306-48056-5_10

Horn, B.K.P. (1981) – Hill shading and the reflectance map. Proceedings of the IEEE, 69:14-47. DOI: 10.1109/PROC.1981.11918

Huston, M.A. (1999) – Local processes and regional patterns: Appropriate scales for understanding variation in the diversity of plants and animals. Oikos, 86:393-401. DOI: 10.2307/3546645

Hutchinson, M.F. (1989) – A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. Journal of Hydrology, 106(3-4):211-232. DOI: 10.1016/0022-1694(89)90073-5

Ichter, J.; Evans, D.; Richard, D. (2014) – Terrestrial habitat mapping in Europe: an overview. 152p., European Environment Agency, Luxembourg. ISBN: 978-9292134204 DOI: 10.2800/11055

Jenson, S.K.; Domingue, J.O. (1988) – Extracting topographic structure from digital elevation data for geographic information system analysis. Photogrammetric Engineering and Remote Sensing, 54(11):1593-1600. DOI: 0099-1112)88/5411-1593$02.25/0

Kelly, M.; Tuxen, K.A.; Stralberg, D. (2011) – Mapping changes to vegetation pattern in a restoring wetland: Finding pattern metrics that are consistent across spatial scale and time. Ecological Indicators, 11(2):263-273. DOI: 10.1016/j.ecolind.2010.05.003

Lagabrielle, E.; Botta, A.; Daré, W.; David, D.; Aubert, S.; Fabricius, C. (2010) – Modelling with stakeholders to integrate biodiversity into land-use planning – Lessons learned in Réunion Island (Western Indian Ocean). Environmental Modelling & Software, 25(11):1413-1425. DOI: 10.1016/j.envsoft.2010.01.011

Laliberté, E.; Grace, J.B.; Huston, M.A.; Lambers, H.; Teste, F.P.; Turner, B.L.; Wardle, D.A. (2013) – How does pedogenesis drive plant diversity? Trends in Ecology & Evolution, 28(6):331-340. DOI: 10.1016/j.tree.2013.02.008

Lamberson, R.H.; Noon, B.R.; Voss, C.; McKelvey, K.S. (1994) – Reserve design for territorial species: the effects of patch size and spacing on the viability of the northern spotted owl. Conservation Biology, 8(1):185-195. DOI: 10.1046/j.1523-1739.1994.08010185.x

Leitão, A.B.; Ahern, J. (2002) – Applying landscape ecological concepts and metrics in sustainable landscape planning. Landscape and Urban Planning, 59(2):65-93. DOI: 10.1016/S0169-2046(02)00005-1

Lourenço, P.; Medeiros, V.; Gil, A.; Silva, L. (2011) – Distribution, habitat and biomass of Pittosporum undulatum, the most important woody plant invader in the Azores Archipelago. Forest Ecology and Management, 262(2):178-187. DOI: 10.1016/j.foreco.2011.03.021

Madeira, J. (1998) – Estudos de neotectónica nas ilhas do Faial, Pico e S. Jorge: Uma contribuição para o conhecimento geodinâmico da junção tripla dos Açores. 481p., PhD dissertation, University of Lisbon.

Madeira, J.; Brum da Silveira, A. (2003) – Active tectonics and first paleoseismological results in Faial, Pico and S. Jorge islands (Azores, Portugal). Annals of Geophysics, 46(5):733-761. DOI: 10.4401/ag-3453.

Madeira, M.; Pinheiro, P.; Madruga, J.; Monteiro, F. (2007) – Soils of volcanic systems in Portugal. In: Arnalds, Ó.; Bartoli, F.; Buurman, P.; Óskarsson, H., Stoops, G.; Garcia-Rodeja, E. (eds.), Soils of volcanic regions of Europe, pp.69-81, Springer Verlag, Berlin. DOI: 10.1007/978-3-540-48711-1_8

Martín-Martín, C.; Bunce, R.G.H.; Saura, S.; Elena-Rosselló, R. (2013) – Changes and interactions between forest landscape connectivity and burnt area in Spain. Ecological Indicators, 33:129-138. DOI: 10.1016/j.ecolind.2013.01.018

Martins, A.M.F. (1993) – The Azores – westernmost Europe: where evolution can be caught red-handed. Boletim do Museu Municipal do Funchal (ISSN 0870-3876), S2:181-198, Funchal, Portugal.

Moeslund, J.E.; Arge, L.; Bøcher, P.K.; Dalgaard, T.; Svenning, J.-C. (2013) – Topography as a driver of local terrestrial vascular plant diversity patterns. Nordic Journal of Botany, 31(2):129-144. DOI: 10.1111/j.1756-1051.2013.00082.x

Moreira, M. (2013) – Valoração da biodiversidade no Parque Natural de Ilha do Pico através da metodologia InVEST. Relatório técnico desenvolvido no âmbito do Projeto SMARTPARKS – Sistema de Ordenamento e Gestão de  Áreas  Protegidas  em Pequenas Ilhas (PTDC/AAC-AMB/098786/2008), 37 p., Universidade dos Açores, Ponta Delgada. Unpublished.

Nogué, S.; de Nascimento, L.; Fernández-Palacios, J.M.; Whittaker, R.J.; Willis, K.J. (2013) – The ancient forests of La Gomera, Canary Islands, and their sensitivity to environmental change. Journal of Ecology, 101(2):368-377. DOI: 10.1111/1365-2745.12051

Nunes, J.C.C. (1999) – A actividade vulcânica na Ilha do Pico do Plistocénico Superior ao Holocénico: mecanismo eruptivo e hazard vulcânico. 357p., PhD dissertation, University of Azores. Unpublished.

Pinheiro, J.; Madeira, M.; Medina, J.; Sampaio, J.; Madruga, J. (1998) – Andisols of the Azores Archipelago (Portugal). Characteristics and classification. XVI World Congress of Soil Science. Montpellier., France

Pinheiro, J.; Sampaio, J.; Madruga, J. (1987) – Carta de capacidade de uso do solo da Região Autónoma dos Açores. Departamento de Ciências Agrárias, Universidade dos Açores, Angra do Heroísmo. Unpublished.

Possingham, H.P.; Wilson, K.A.; Andelman, S.J.; Vynne, C.H. (2006) – Protected areas: goals, limitations, and design. In: Groom, M.J.; Meffe, G.K.; Carroll, C.R. (eds.), Principles of conservation biology, 3rd ed., pp.509-533, Sinauer Associates Inc., Sunderland. ISBN: 0878935975.

Richard, Y.; Armstrong, D.P. (2010) – Cost distance modelling of landscape connectivity and gap-crossing ability using radio-tracking data. Journal of Applied Ecology, 47(3):603-610. DOI: 10.1111/j.1365-2664.2010.01806.x

Robertson, P.; Bainbridge, I.; Soye, Y. (2011) – Priorities for conserving biodiversity on European islands. Convention on the conservation of European wildlife and natural habitats. Standing Committee, Strasbourg, France. http://www.ebcd.org/pdf/en/327-Priorities_for_
Conserving_Biodiversity_on_European_Islands.pdf

Rodríguez‐Sánchez, F.; Arroyo, J. (2008) – Reconstructing the demise of Tethyan plants: climate‐driven range dynamics of Laurus since the Pliocene. Global Ecology & Biogeography, 17(6):685-695. DOI: 10.1111/j.1466-8238.2008.00410.x

Rodríguez‐Sánchez, F.; Guzmán, B.; Valido, A.; Vargas, P.; Arroyo, J. (2009) – Late Neogene history of the laurel tree (Laurus L., Lauraceae) based on phylogeographical analyses of Mediterranean and Macaronesian populations. Journal of Biogeography, 36(7):1270-1281. DOI: 10.1111/j.1365-2699.2009.02091.x

Saffache, P.; Angelelli, P. (2010) – Integrated coastal zone management in small islands: A comparative outline of some islands of the Lesser Antilles. Revista de Gestão Costeira Integrada / Journal of Integrated Coastal Zone Management, 10(3):255-279. DOI: 10.5894/rgci228

Santos, C.F.S.; Gomes de Oliveira, A. (2013) – Land use mapping in a protected area of Lagoas de Guarajuba in Camacari, Bahia, Brazil. Revista de Gestão Costeira Integrada / Journal of Integrated Coastal Zone Management, 13(3):391-397. DOI: 10.5894/rgci396

Saunders, D.A.; Hobbs, R.J.; Margules, C.R. (1991) – Biological consequences of ecosystem fragmentation: a review. Conservation Biology, 5(1):18-32. DOI: 10.1111/j.1523-1739.1991.tb00384.x

Schaefer, H.; Hardy, O.J.; Silva, L.; Barraclough, T.G.; Savolainen, V. (2011) – Testing Darwin’s naturalization hypothesis in the Azores. Ecology Letters, 14(4):389-396. DOI: 10.1111/j.1461-0248.2011.01600.x

Schirone, B.; Ferreira, R.C.; Vessella, F.; Schirone, A.; Piredda, R.; Simeone, M.C. (2010) – Taxus baccata in the Azores: a relict form at risk of imminent extinction. Biodiversity & Conservation, 19(6):1547-1565. DOI: 10.1007/s10531-010-9786-0

Shaffer, M.L. (1981) – Minimum population sizes for species conservation. BioScience, 31(2):131-134. DOI: 10.2307/1308256

Silva, L.; Smith, C. (2006) – A quantitative approach to the study of non-indigenous plants: an example from the Azores Archipelago. Biodiversity & Conservation, 15(5):1661-1679. DOI: 10.1007/s10531-004-5015-z

Silva, L.; Tavares J. (1997) – Factors affecting Myrica faya Aiton demography in the Azores. Açoreana (ISSN 0874-0380), 8(3):359-374, Ponta Delgada, Portugal. Available at https://repositorio.uac.pt/
bitstream/10400.3/796/1/Factors%20affecting%20Myrica%20faya%
20Aiton%20demography%20in%20the%20Azores.pdf

Silveira, P.; Dentinho, T. (2010) – Spatial interaction model of land use – An application to Corvo Island from the 16th, 19th and 20th centuries. Computers, Environment and Urban Systems, 34(2):91-103. DOI: 10.1016/j.compenvurbsys.2009.10.003

Sjögren, E. (2000) – Aspects on the biogeography of Macaronesia from a botanical point of view. Arquipélago (ISSN 0873-4704), S2PA:1-9, Ponta Delgada, Açores, Portugal. Available at http://www.db.uac.pt/pdf/
faunaA/4_aspect.pdf

Smith, R.J. (2004) – Conservation Land-Use Zoning (CLUZ) software. Durrell Institute of Conservation and Ecology, Canterbury. http://anotherbobsmith.files.wordpress.com/2013/03/cluz_guide.pdf

Stephenson, N.L. (1990) – Climatic control of vegetation distribution: the role of water balance. The American Naturalist, 135(5):649-670. DOI: 10.1086/285067

Triantis, K.A.; Borges, P.A.V.; Ladle, R.J.; Hortal, J.; Cardoso, P.; Gaspar, C.; Dinis, F.; Mendonça, E.; Silveira, L.M.A.; Gabriel, R.; Melo, C.; Santos, A.M.C.; Amorim, I.R.; Ribeiro, S.P.; Serrano, A.R.M.; Quartau, J.A.; Whittaker, R.J. (2010) – Extinction debt on oceanic islands. Ecography, 33(2):285-294. DOI: 10.1111/j.1600-0587.2010.06203.x

Tscharntke, T.; Steffan‐Dewenter, I.; Kruess, A.; Thies, C. (2002) – Characteristics of insect populations on habitat fragments: a mini review. Ecological Research, 17(2):229-239. DOI: 10.1046/j.1440-1703.2002.00482.x

Vanderpoorten, A.; Rumsey, F.J.; Carine, M.A. (2007) – Does Macaronesia exist? Conflicting signal in the bryophyte and pteridophyte floras. American Journal of Botany, 94(4):625-639. DOI: 10.3732/ajb.94.4.625

Vargas, P. (2007) – Are Macaronesian islands refugia of relict plant lineages?: A molecular survey. In: Weiss, S.; Ferrand, N. (eds.), Phylogeography of Southern European refugia, pp. 297-314, Springer, Netherlands. DOI: 10.1007/1-4020-4904-8_11

Wahba, G. (1990) – Spline models for observational data. CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia.

Watts, K.; Handley, P. (2010) – Developing a functional connectivity indicator to detect change in fragmented landscapes. Ecological Indicators, 10(2):552-557. DOI: 10.1016/j.ecolind.2009.07.009

Weigelt, P.; Kreft, H. (2012) – Quantifying island isolation - Insights from global patterns of insular plant species richness. Ecography, 36(4):417-429. DOI: 10.1111/j.1600-0587.2012.07669.x

Wong, P.P.; Marone, E.; Lana, P.; Fortes, M. (coord.) (2005) – Island systems. In: Hassan, R.; Schales, R.; Ash, N. (ed.), Ecosystems and human well-being: current state and trends, pp.663-680, Island Press, Washington DC. ISBN: 1559632275.

Wright, J.P.; Flecker, A.S.; Jones, C.G. (2003) – Local vs. landscape controls on plant species richness in beaver meadows. Ecology, 84(12):3162-3173. DOI: 10.1890/02-0598

Yanes, M.C.M.; Aguilar, M.C.A.; Vernet, J.-L.; Ourcival, J.-M. (1997) – Man and vegetation in northern Tenerife (Canary Islands, Spain), during the prehispanic period based on charcoal analyses. Vegetation History and Archaeobotany, 6(3):187-195. DOI: 10.1007/BF01372570

Zelený, D.; Li, C.-F.; Chytrý, M. (2010) – Pattern of local plant species richness along a gradient of landscape topographical heterogeneity: result of spatial mass effect or environmental shift? Ecography, 33(3):578-589. DOI: 10.1111/j.1600-0587.2009.05762.x

Zonneveld, I.S. (1989) – The land unit – A fundamental concept in landscape ecology, and its applications. Landscape Ecology, 3(2):67-86. DOI: 10.1007/BF00131171

 

em construção