Volume 10, Issue 4 - December 2010
Download (14.643KB, PDF) |
- Abstract / Resumo
- References / Bibliografia
- Citations / Citações
Revista de Gestão Costeira Integrada
Volume 10, Número 4, Dezembro 2010, Páginas 397-417
DOI: 10.5894/rgci227
*
Submissão – 5 Agosto 2010; Avaliação – 20 Outubro 2010; Recepção da
versão revista – 12 Novembro 2010; Disponibilização on-line – 6 Janeiro
2011
Estudo do Galgamento de Estruturas Marítimas utilizando um Modelo Numérico baseado na Teoria da Onda em Condições de Água pouco Profunda *
Numerical Modelling of Wave Overtopping of Maritime Structures using a NLSW Equation Model
Maria Teresa Reis @, 1, Maria da Graça Neves 1
@ Autor correspondente
1 LNEC – Laboratório Nacional de Engenharia Civil, Av. do Brasil 101, 1700-066, Lisboa. E-mails: Teresa Reis - treis@lnec.pt; Graça Neves - gneves@lnec.pt
RESUMO
Apresenta-se neste artigo o modelo numérico AMAZON, baseado na teoria
da onda em condições de água pouco profunda. Na sua versão original, o
modelo estava essencialmente desenvolvido para estruturas impermeáveis.
Desde 2007, o Laboratório Nacional de Engenharia Civil (LNEC), em
colaboração com o Dr. Keming Hu (Royal Haskoning, UK), tem vindo a
desenvolver o modelo de forma a permitir modelar explicitamente o
escoamento em meios porosos e a proceder à sua validação sistemática
para o estudo do galgamento de estruturas marítimas porosas. Os modelos
deste tipo existentes têm sido validados essencialmente para estruturas
impermeáveis e para praias permeáveis. Para simular o escoamento em
meios porosos, foram implementadas no modelo as equações de Darcy e de
Forchheimer.
São apresentados dois casos de aplicação do modelo, utilizando a
equação de Darcy, para o estudo do galgamento de estruturas de
protecção portuária e a validação dos seus resultados por comparação
com dados de ensaios em modelo físico reduzido bidimensional realizados
no LNEC. O primeiro caso de estudo corresponde a uma solução
alternativa proposta para a reabilitação do enraizamento do molhe Sul
do porto de pesca da Póvoa de Varzim, trecho sobre o qual recai a maior
exigência de eficácia relativamente aos galgamentos. O perfil-tipo
proposto consiste num quebra-mar de estrutura mista com manto de
enrocamento. O segundo caso de estudo corresponde a duas soluções
alternativas propostas para a reabilitação final do molhe Oeste do
Porto de Sines, que em 1978/79 sofreu estragos muito avultados. Dos
três postos de acostagem existentes neste molhe, apenas dois se
encontram em funcionamento actualmente (postos 2 e 3). A reabilitação
final visa reactivar o posto 1 e melhorar as condições de abrigo e a
operacionalidade do porto. Os perfis-tipo propostos para esta
reabilitação consistem num quebra-mar de taludes com manto composto por
cubos Antifer.
Os resultados obtidos são bastante satisfatórios, embora o modelo
apresente uma ligeira tendência para prever por excesso os caudais
obtidos nos ensaios: os valores do cociente entre os caudais médios de
galgamento obtidos com a nova versão do AMAZON, qAM, e com o modelo
físico, qMF, variam entre 0.9 e 1.4 para o quebra-mar com manto de
enrocamento e entre 1.0 e 1.76 para o quebra-mar com manto composto por
blocos artificiais. Os resultados mostram ainda que os valores de qAM
são mais sensíveis ao valor da velocidade máxima que o escoamento de
água pode ter durante a transferência entre a camada porosa e a camada
superficial, do que à escolha da condutividade hidráulica e da
porosidade.
Com o objectivo de se dispor no futuro duma ferramenta numérica
eficiente para estudos de engenharia costeira e portuária, é necessário
ainda: validar o modelo para diferentes geometrias de estruturas
marítimas, diferentes características do seu meio poroso e diferentes
escalas do modelo; investir na optimização da discretização da malha de
cálculo; e implementar alguns desenvolvimentos que incluem, entre
outros, o acoplamento entre o AMAZON e um modelo de propagação da
agitação marítima desde o largo até à estrutura galgada e a
paralelização do código.
Palavras-chave:
Estruturas marítimas; galgamentos; modelos numéricos; teoria da onda em
condições de água pouco profunda; escoamento em meios porosos.
ABSTRACT
This paper presents the numerical model AMAZON, based on the nonlinear
shallow water (NLSW) equations. The original version of AMAZON did not
explicitly account for porous flow; it was developed basically for
impermeable structures. Since 2007, the National Civil Engineering
Laboratory (LNEC), Portugal, in collaboration with Dr. Keming Hu (Royal
Haskoning, UK), has been developing the porous flow model to allow the
numerical simulation of wave overtopping of porous maritime structures
and its systematic validation for these structures. The existing NLSW
models have mainly been validated for impermeable structures and for
permeable beaches. The development includes the addition of one porous
layer to the original model design and the porosity is taken as
constant for the whole porous element. To govern the water exchange
between the porous cells, both the Darcy equation (valid for laminar
stationary flows) and the Forchheimer equation (valid for turbulent
stationary flows) are implemented in AMAZON. Unlike some other NLSW
models, the maximum velocity that the flow can have during the exchange
of water between the porous and the free-flow layers has been included
as an input to AMAZON.
The paper illustrates AMAZON’s application, using Darcy’s equation, to
study the mean wave overtopping discharge at two porous breakwaters
that protect Portuguese harbours and the validation of its results by
comparison with two-dimensional physical model data collected at LNEC.
The first case study is of a proposed cross-section for the
rehabilitation of the root of the South breakwater of Póvoa de Varzim
harbour. The root of this breakwater directly protects the local
Nautical Club building and, therefore, it is the stretch for which
overtopping should be minimal. The proposed cross-section is basically
a composite structure, with double layer rock armour. The second case
study refers to two proposed solutions for the final rehabilitation of
the West breakwater of Sines harbour, which suffered serious damage to
the armour layer and superstructure in 1978/79. At present, only two of
the three oil tanker berths are in operation: berth 2 and berth 3. The
final rehabilitation has the primary objective of reactivating berth 1
(for reception, loading and unloading of oil tankers) but it also aims
to generally improve the shelter and operating conditions within the
port. The cross-sections proposed for this rehabilitation are basically
rubble-mound breakwaters protected by Antifer cubes.
The AMAZON results are quite satisfactory, although the model tends to
slightly over-predict the discharges: the ratio between the mean
overtopping discharges obtained with the new version of AMAZON, qAM,
and with the physical model, qMF, varies between 0.9 and 1.4 for the
rock structure and between 1.0 and 1.76 for the Antifer structure. The
results also show that the values of qAM are more sensitive to the
value of the maximum velocity that the flow can have during the
exchange of water between the porous and the free-flow layers than to
the choice of the hydraulic conductivity and of the constant porosity.
The results are rather promising, given the different approximations
made for modelling the porous breakwaters (such as using the Darcy
equation instead of the Forchheimer equation to govern the internal
flow and employing only one porous layer to represent multi-layered
structures) and AMAZON’s inherent restrictions (mainly relating to the
shallow water assumptions and the simulation of wave breaking).
Nevertheless, to develop a user-friendly numerical model that may be
used in real case studies of overtopping of porous structures and that
provides a good compromise between computational effort and accuracy in
terms of overtopping results, it is necessary to: further test the
model, employing different structural configurations, different
arrangements of rock or concrete armour blocks and different scales (to
consider the implications of using two different governing equations
for flow within the porous layer); analyse the grid optimization; and
implement some developments of AMAZON, which are expected to include
coupling AMAZON with a wave transformation model to propagate the waves
to the AMAZON seaward boundary and code parallelization.
Keywords: Maritime structures; wave overtopping; numerical models; non-linear shallow water (NLSW) equations; porous flow.
Besley,
P. (1999) - Overtopping of Seawalls: Design and Assessment Manual.
130p., Environment Agency, R&D Technical Report W178, Bristol,
UKReino Unido. (ISBN: 1-85705-069-X).
CIRIA/CUR/CETMEF
(2007) - The Rock Manual: The Use of Rock in Hydraulic Engineering (2nd
edition). 1304p., CIRIA C683, Londres, Reino Unido. (ISBN:
978-0-86017-683-1)
Clarke, S.; Dodd, N.,
Damgaard, J. (2004) - Modelling flow in and above a porous beach.
Journal of Waterway, Port, Coastal, and Ocean Engineering,
130(5):223-233. (ISSN: 0733-950X).
http://dx.doi.org/10.1061/(ASCE)0733-950X(2004)130:5(223)
CONSULMAR
(2008) - Reconstrução e Activação do Posto 1 do Porto de Sines.
Reabilitação do Molhe Oeste. Projecto de Execução. 124p., Lisboa,
Portugal. (não publicado).
CONSULMAR
(2006) - Reconstrução e Activação do Posto 1 do Molhe Oeste do Porto de
Sines. Estudo Prévio. 86p., Lisboa, Portugal. (não publicado)
Dalrymple,
R.A.; Rogers, B.D. (2006) - Numerical modeling of water waves with the
SPH method. Coastal Engineering, 53(2-3): 141-147. (ISSN: 0378-3839). http://dx.doi.org/10.1016/j.coastaleng.2005.10.004
Didier,
E.; Neves, M.G. (2009) - Wave overtopping of a typical coastal
structure of the Portuguese coast using a SPH model. Journal of Coastal
Research, Special Issue 56:496-500. (ISSN: 0749-0208)
Dodd,
N. (1998) - Numerical model of wave run-up, overtopping and
regeneration. Journal of Waterway, Port, Coastal, and Ocean
Engineering, 124(2):73-81. (ISSN: 0733-950X). http://dx.doi.org/
10.1061/(ASCE)0733-950X(1998)124:2(73)
García,
R.G. (2007) - Análisis de la Funcionalidad y Estabilidad de Obras
Marítimas Mediante un Modelo Numérico Basado en las Ecuaciones de
Reynolds. 266p., Ph.D. thesis, University of Cantabria, Espanha.
Harten,
A.; Lax, P.D.; Van Leer, B. (1983) - On upstream differencing and
Godunov type schemes for hyperbolic conservation laws. SIAM
Review, 25(1):35-61. (ISSN: 0036-1445). http://dx.doi.org/
10.1137/1025002
Hu,
K. (2000) - High-Resolution Finite Volume Methods for Hydraulic Flow
Modelling. 194p., PhD Thesis, Centre for Mathematical Modelling and
Flow Analysis, Manchester Metropolitan University, Manchester, Reino
Unido.
Hu, K.; Meyer, D. (2005) - The
validity of the non-linear shallow water equations for modelling wave
runup and reflection. Proc. ICE Coastlines, Structures &
Breakwaters ‘05, 195-206, Thomas Telford, Londres, Reino Unido.
Hu,
K.; Mingham, C.G.; Causon, D.M. (2000) - Numerical simulation of wave
overtopping of coastal structures using the non-linear shallow water
equations. Coastal Engineering, 41(4):433-465. (ISSN: 0378-3839). http://dx.doi.org/10.1016/S0378-3839(00)00040-5
Ingram,
D.; Causon, D.; Mingham, C.; Zhou, J.G. (2002) - Numerical simulation
of violent wave overtopping. In: J.M. Smith (ed.), Proc. 28th
International Conference on Coastal Engineering (ICCE), 2286-2298,
World Scientific, Singapore.
Ingram, D.M.;
Causon, D.M.; Gao, F.; Mingham, C.G.; Troch, P.; Li, T.; De Rouck, J.
(2004) - Free Surface Numerical Modelling of Wave Interactions with
Coastal Structures. 53p., CLASH WP5 Report, Manchester Metropolitan
University and University of Gent, Manchester, Reino Unido.
http://www.clash.ugent.be/results/D27numericalmodelling.pdf
Lemos,
R.; Reis, M.T.; Silva, L.G. (2006) - Scale Model Tests of the South
Breakwater Root of Póvoa de Varzim Harbour: Overtopping Two-Dimensional
Tests. 70p., Relatório 05/06-NPE, LNEC, Lisboa, Portugal. (não
publicado)
Lemos, R.; Silva, L.G. (2008) -
Ensaios em Modelo Reduzido da Reconstrução do Molhe Oeste do Porto de
Sines. 91p., Relatório 141/2008-NPE, LNEC, Lisboa, Portugal. (não
publicado)
Lin, P.; Liu, P.L.-F. (1998) - A
numerical study of breaking waves in the surf zone. Journal of Fluid
Mechanics, 359:239-264. (ISSN: 0022-1120).
http://dx.doi.org/10.1017/S002211209700846X
Losada,
I.J.; Lara, J.L.; Guanche, R.; Gonzalez-Ondina, J.M. (2008) - Numerical
analysis of wave overtopping of rubble mound breakwaters. Coastal
Engineering, 55(1):47-62. (ISSN: 0378-3839).
http://dx.doi.org/10.1016/j.coastaleng.2007.06.003
Mansard,
E.P.D.; Funke, E.R. (1980) - The measurement of incident and reflected
spectra using a least squares method. In: B.L. Edge (ed.), Proc. 17th
International Conference on Coastal Engineering (ICCE), 154-172, ASCE,
Nova Iorque, Estados Unidos da América. 1981
Neves,
M.G.; Reis, M.T.; Didier, E. (2010) - Comparisons of wave overtopping
at coastal structures calculated with AMAZON, COBRAS-UC and SPHYSICS.
Proc. ECCOMAS CFD 2010, V European Conference on Computational Fluid
Dynamics, 14 a 17 de Junho, LNEC, Lisboa, Portugal. (CD-Rom).
Neves,
M.G.; Reis, M.T.; Losada, I.; Hu, K. (2008) - Wave overtopping of Póvoa
de Varzim breakwater: physical and numerical simulations. Journal of
Waterway, Port, Coastal, and Ocean Engineering, 134(4):226-236. (ISSN:
0733-950X). http://dx.doi.org/10.1061/
(ASCE)0733-950X(2008)134:4(226)
Pullen, T.; Allsop, N.W.H. (2003) - Use of Numerical Models of Wave Overtopping: A Summary of Current Understanding. http://www.hrwallingford.co.uk/downloads/ projects/overtopping/
num_model
_guidance.pdf.
Reis,
M.T.; Hu, K.; Hedges, T.S.; Mase, H. (2008a) - A comparison of
empirical, semi-empirical and numerical wave overtopping models.
Journal of Coastal Research, 24(2B):250-262. (ISSN: 0749-0208). http://dx.doi.org/10.2112/05-0592.1
Reis,
M.T.; Hu, K.; Neves, M.G.; Hedges, T.S. (2008b) - Numerical modelling
of breakwater overtopping using a NLSW equation model with a porous
layer. Proc. 31st International Conference on Coastal Engineering
(ICCE), 3097-3109, World Scientific, Singapore.
Reis,
M.T.; Neves, M.G.; Hedges, T.S. (2008c) - Investigating the lengths of
scale model tests to determine mean wave overtopping discharges.
Coastal Engineering Journal, 50(4):441-462. (ISSN: 0578-5634). http://dx.doi.org/10.1142/S057856340800182X
Reis,
M.T.; Neves, M.G.; Hu, K. (2009a) - Wave overtopping of a porous
structure: numerical and physical modeling. Journal of Coastal
Research,
SI 56(II):539-543. (ISSN: 0749-0208)
Reis,
M.T.; Neves, M.G.; Hu, K.; Lopes, M.R.; Silva, L.G. (2009b) - Final
rehabilitation of Sines west breakwater: physical and numerical
modelling of overtopping. In: W. Allsop (ed.), Proc. ICE Coasts, Marine
Structures and Breakwaters 2009, 636-647, Thomas Telford, Londres,
Reino Unido. (ISBN: 978-0-7277-4131-8)
Van
Albada, G.D., Van Leer, B. & Roberts, W.W. Jr. (1982) - A
comparative study of computational methods in cosmic gas dynamics.
Astronomy and Astrophysics, 108:76-84. (ISSN: 0004-6361).
Van
Gent, M.R.A. (1994) - The modelling of wave action on and in coastal
structures. Coastal Engineering, 22:311-339. (ISSN: 0378-3839)
http://dx.doi.org/10.1016/0378-3839(94)90041-8
Van
Gent, M.R.A. (1996) - Numerical modeling of wave interaction with
dynamically stable structures. Proc. 25th International Conference on
Coastal Engineering (ICCE), 1930-1943, Orlando, Florida, Estados Unidos
da América.
Van Gent, M.R.A.; Pozueta, B.;
Van den Boogaard, H.F.P.; Medina, J.R. (2005) - D42 Final Report on
Generic Prediction Method. 33p.,
CLASH WP8 Report. Delft, Holanda. http://www.clash.ugent.be/results/
D42finalreportgenericpredictionmethod.pdf
Van Leer, B. (1979) - Towards the ultimate conservative difference scheme. V. A second order sequel to Godunov’s method. Journal of Computational Physics, 32(1):101-136. (ISSN: 0021-9991). http://dx.doi.org/10.1016/0021-9991(79)90145-1
em construção